Расчет систем утилизации теплоты вытяжного вентиляционного воздуха. Основы проектирования и монтажа систем отопления. Перспективное направление развития утилизаторов тепла

Предыстория развития

Тепло воздуха, который удаляется в атмосферу, является источником экономии энергоресурсов. Не секрет, что на подогрев воздуха, который поступает в здание расходуется 40…80% теплозатрат. Поэтому идея подогрева свежего воздуха за счет отработанного не нова. Еще в Советском Союзе непрерывно велись работы по созданию установок, которые бы позволяли использовать тепловую энергию вытяжного воздуха. Но к сожалению результаты этих исследований использовались только в специальных проектах (промышленного, оборонного назначения, научного значения).

За границей причиной применения, обуславливающей начало применения подобных установок, стал первый энергетический кризис. При этом, устройства утилизации тепловой энергии удаляемого воздуха, изначально проектировались для использования в многоквартирных жилых домах и коттеджах. Как следствие этого, сегодня воздушное отопление повсеместно применяется в Канаде и ближайших к ней штатах США. Так в Канаде не применяются вовсе водяные системы отопления.

В России утилизаторы тепла массово начали применяться с началом активного малоэтажного строительства, когда у частных застройщиков начал появляться интерес к энергоэффективному, энергосберегающему оборудованию.

Применение электроэнергии для отопления

Использование вентиляционной отопительной техники подразумевает применение электроэнергии для отопления. До недавнего времени применение электроэнергии для отопления было запрещено законодательно. Это связано с политикой экономии энергии, проводимой в Советском Союзе. Со времени распада Советского Союза многое изменилось.

В настоящее время, когда начинают применяться новые материалы и осваиваться новые технологии, мнение специалистов о допустимости применения электроэнергии для отопления начинает меняться. Ввод в действие 2000 года новых норм, которые требуют улучшения теплозащиты жилых зданий, способствует этому. Согласно новых норм, нормируемые потери тепла через наружные стены сокращаются в 2,5–3,0 раза по сравнению с нормами 1995 г.

В будущем нормы по теплозащите и энергоэффективности будут только ужесточаться. В этих условиях исчезнет само понятие инфильтрации воздуха, помещения будут герметичными. В таких условиях применению устройств утилизации тепла откроются самые широкие перспективы.

Существующие виды рекуператоров

Настоящая номенклатура утилизаторов тепла очень разнообразна. Но все разнообразие можно свести к следующим типам: а) кожухотрубные и пластинчатые теплообменники, в том числе, перекрёстноточные; б) роторные (регенеративные); в) тепловые насосы с промежуточным рабочим телом. Возможности большинства современных устройств позволяют утилизировать и использовать для подогрева подаваемого в помещения воздуха только 60% тепла отработанного воздуха. Для объектов с небольшим объемом здания для того, чтобы установка утилизатора тепла окупилась необходимо, чтобы эта цифра составляла 90 %.

Перспективное направление развития утилизаторов тепла

Увеличить КПД утилизаторов тепла позволяет применение описанного ниже метода. Как известно, теплоемкость воды наибольшая по сравнению с другими жидкостями. Теплоёмкость воздуха в 4,5 раза ниже теплоёмкости воды. На использовании воды основана технология ультра-дисперсии удаляемого воздуха в воде. Для того чтобы увеличить скорость передачи тепла от удаляемого воздуха этот воздух специальным образом пропускают через воду, создавая пузырьки размером с микрон.

Скорость передачи тепла увеличивается так как микронных размеров пузырьки разрушают термическое сопротивления поверхностного слоя воды. Применение технологии технология ультра-дисперсии удаляемого воздуха в воде позволит использовать 90-95% тепла удаляемого воздуха. Важно, что рекуператор, построенный по указанной технологии, имеет минимальное число деталей, минимальные размеры, он прост в эксплуатации.

Способы применения утилизаторов тепла

  • Первый способ – применение теплоутилизатора рекуперативного типа. При этом имеет место частичный подогрев подаваемого в помещение воздуха.
  • Второй способ – утилизация теплоты с помощью тепловых насосов.
  • Третий способ – использование тепла уходящего воздуха для подогрева поступающей воды. Система включает в себя значительного габарита водонагреватели и аккумуляторы подогретой воды.

Современное положение дел в России по рассматриваемому вопросу

Федеральным законом № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности…» предписано снизить энергоемкость инженерных систем здания. Стоит задача к 2020 году снизить энергоемкость ВВП на 40% к уровню 2007 года. Такая тенденция на увеличение энергоэффективности, улучшение теплозащиты повсеместна.

Постановлением Правительства Москвы № 900 от 5 октября 2010 года «О повышении энергетической эффективности жилых, социальных и общественно-деловых зданий в городе Москве…», установлен уровень энергопотребления, обеспечить невозможно без утилизации тепла.

Российская Федерация, вступив в ВТО, обязалась привести цены на энергоносители для внутренних потребителей к уровню мировых цен. Во всем мире вопросы энергоэффективности, а как следствие вопросы утилизации тепла стоят очень остро. Правительства стран вводят в действие и добиваются исполнения программ по улучшению энергоэффективности. Поэтому с ростом внутренних цен на энергоносители неизбежно будет расти интерес к установкам по утилизации тепла

В «русской печи» нагревался приточный воздух, с помощью этого прогревалось жилое помещение. В Европе систему отопления, где как в русской печи предусматривались каналы, называли «русской». Этим признана большая эффективность русской печи в сравнении с европейским отоплением. В настоящее время можно говорить о необходимости вернуться к истокам в вопросах отопления.

Приточно-вытяжная вентиляция с рекуперацией

В системе кондиционирования воздуха теплоту удаляемого воздуха из помещений можно утилизировать двумя способами:

· Применяя схемы с рециркуляцией воздуха;

· Устанавливая утилизаторы теплоты.

Последний способ, как правило, применяют в прямоточных схемах систем кондиционирования воздуха. Однако использование утилизаторов теплоты на исключается и в схемах с рециркуляцией воздуха.

В современных системах вентиляции и кондиционирования воздуха применяется самое разнообразное оборудование: нагреватели, увлажнители, различные виды фильтров, регулируемые решетки и многое другое. Все это необходимо для достижения требуемых параметров воздуха, поддержания или создания комфортных условий для работы в помещении. На обслуживание всего этого оборудования требуется достаточно много энергии. Эффективным решением сбережения энергии в системах вентиляции становятся теплоутилизаторы. Основной принцип их работы – нагрев потока воздуха, подаваемого в помещение, с использованием теплоты потока, удаляемого из помещения. При использовании теплоутилизатора требуется меньшая мощность калорифера на подогрев приточного воздуха, тем самым уменьшается количество энергии, необходимое для его работы.

Утилизация теплоты в зданиях с кондиционированием воздуха может быть произведена посредством утилизации теплоты вентиляционных выбросов. Утилизация сбросной теплоты для нагрева свежего воздуха (или охлаждение поступающего свежего воздуха сбросным воздухом после системы кондиционирования летом) является простейшей формой утилизации. При этом можно отметить четыре типа систем утилизации, о которых уже упоминалось: вращающиеся регенераторы; теплообменники с промежуточным теплоносителем; простые воздушные теплообменники; трубчатые теплообменники. Вращающийся регенератор в системе кондиционирования воздуха может повышать температуру приточного воздуха зимой на 15 °С, а летом он может снижать температуру поступающего воздуха на 4-8 °С {6.3). Как и в других системах утилизации, за исключением теплообменника с промежуточным теплоносителем, вращающийся регенератор может функционировать только в том случае, если вытяжной и всасывающий каналы прилегают друг к другу в какой-то точке системы.



Теплообменник с промежуточным теплоносителем менее эффективен, чем вращающийся регенератор. В представленной системе вода циркулирует через два теплообменных змеевика, и так как применяется насос, то два змеевика могут быть расположены на некотором расстоянии друг от друга. И в этом теплообменнике, и во вращающемся регенераторе имеются подвижные части (насос и электродвигатель приводятся в движение и это отличает их от воздушного и трубчатого теплообменников. Одним из недостатков регенератора является то, что в каналах может происходить загрязнение. Грязь может осаждаться на колесе, которое затем переносит его во всасывающий канал. В большинстве колес в настоящее время предусмотрена продувка, которая сводит перенос загрязнений до минимума.

Простой воздушный теплообменник представляет собой стационарное устройство для теплообмена между отработанным и поступающим потоками воздуха, проходящими через него противотоком. Этот теплообменник напоминает прямоугольную стальную коробку с открытыми концами, разделенную на множество узких каналов типа камер. По чередующимся каналам идет отработанный и свежий воздух, и теплота передается от одного потока воздуха к другому просто через стенки каналов. Перенос загрязнений в теплообменнике не происходит, и поскольку значительная площадь поверхности заключена в компактном пространстве, достигается относительно высокая эффективность. Теплообменник с тепловой трубой можно рассматривать как логическое развитие конструкции вышеописанного теплообменника, в котором два потока воздуха в камеры остаются абсолютно раздельными, связанными пучком ребристых тепловых труб, которые переносят теплоту от одного канала к другому. Хотя стенка трубы может рассматриваться как дополнительное термическое сопротивление, эффективность теплопередачи внутри самой трубы, в которой происходит цикл испарения-конденсации, настолько велика, что в этих теплообменниках можно утилизировать до 70% сбросной теплоты. Одно из основных преимуществ этих теплообменников по сравнению с теплообменником с промежуточным теплоносителем и вращающимся регенератором - их надежность. Выход из строя нескольких труб лишь незначительно снизит эффективность работы теплообменника, но не остановит полностью систему утилизации.

При всем многообразии конструктивных решений утилизаторов тепла вторичных энергоресурсов в каждом из них имеются следующие элементы:

· Среда- источник тепловой энергии;

· Среда- потребитель тепловой энергии;

· Теплоприемник- теплообменник, воспринимающий тепло от источника;

· Теплопередатчик- теплообменник, передающий тепловую энергию потребителю;

· Рабочее вещество, транспортирующее тепловую энергию от источника к потребителю.

В регенеративных и воздуховоздушных (воздухожидкостных) рекуперативных теплоутилизаторах рабочим веществом являются сами теплообменивающиеся среды.

Примеры применения.

1. Подогрев воздуха в системах воздушного отопления.
Калориферы предназначены для быстрого нагрева воздуха с помощью водяного теплоносителя и равномерного его распределения с помощью вентилятора и направляющих жалюзи. Это хорошее решение для строительства и производственных цехов, где требуется быстрый нагрев и поддержание комфортной температуры только в рабочее время (в это же время, как правило, работают и печи).

2. Нагрев воды в системе горячего водоснабжения.
Применение теплоутилизаторов позволяет сгладить пики потребления энергии, так как максимальное потребление воды приходится на начало и конец смены.

3. Подогрев воды в системе отопления.
Закрытая система
Теплоноситель циркулирует по замкнутому контуру. Таким образом, отсутствует риск его загрязнения.
Открытая система. Теплоноситель нагревается горячим газом, а затем отдает тепло потребителю.

4. Подогрев дутьевого воздуха, идущего на горение. Позволяет сократить потребление топлива на 10%–15%.

Подсчитано, что основным резервом экономии топлива при работе горелок для котлов, печей и сушилок является утилизация теплоты отходящих газов путем нагрева воздухом сжигаемого топлива. Рекуперация тепла отходящих дымовых газов имеет большое значение в технологических процессах, поскольку тепло, возвращенное в печь или котел в виде подогретого дутьевого воздуха, позволяет сократить потребление топливного природного газа до 30 %.
5. Подогрев топлива, идущего на горение с использованием теплообменников "жидкость – жидкость". (Пример – подогрев мазута до 100˚–120˚ С.)

6. Подогрев технологической жидкости с использованием теплообменников "жидкость – жидкость". (Пример – подогрев гальванического раствора.)

Таким образом, теплоутилизатор – это:

Решение проблемы энергоэффективности производства;

Нормализация экологической обстановки;

Наличие комфортных условий на вашем производстве – тепла, горячей воды в административно-бытовых помещениях;

Уменьшение затрат на энергоресурсы.

Рисунок 1.

Структура энергопотребления и потенциала энергосбережения в жилых зданиях: 1 – трансмиссионные теплопотери; 2 – расход теплоты на вентиляцию; 3 – расход теплоты на горячее водоснабжение; 4– энергосбережение

Список использованной литературы.

1. Караджи В. Г., Московко Ю.Г.Некоторые особенности эффективного использования вентиляционно-отопительного оборудования. Руководство - М., 2004

2. Еремкин А.И, Бызеев В.В. Экономика энергоснабжения в системах отопления, венталиции и кондиционирования воздаха. Издателество Ассоциации строительных вузов М., 2008.

3. Сканави А. В., Махов. Л. М. Отопление. Издательство АСВ М., 2008

ЛЕКЦИЯ

по учебной дисциплине"Тепло-массообменное оборудование предприятий"

(к учебному плану 200__г)

Занятие № 26. Теплообменники – утилизаторы. Конструкции, принцип действия

Разработал: к.т.н., доцент Костылева Е.Е.

Обсуждена на заседании кафедры

протокол № _____

от "_____" ___________2008 г.

Казань - 2008 г.

Занятие № 26 . Теплообменники – утилизаторы. Конструкции, принцип действия

Учебные цели:

1. Изучить конструкции и принцип различных теплообменников утилизаторов

Вид занятия: лекция

Время проведения : 2 часа

Место проведения : ауд. ________

Литература:

1. Электронные ресурсы Internet.

Учебно-материальное обеспечение:

Плакаты, иллюстрирующие учебный материал.

Структура лекции и расчет времени:

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. 1 Теплообменники- утилизаторы:
а - пластинчатый утилизатор; б - утилизатор ТКТ;в - вращающийся; г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.



Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

2. РАБОТА ТЕПЛООБМЕННИКА – УТИЛИЗАТОРА В СИСТЕМАХ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Теплообменники-утилизаторы могутт быть использованы в системах вентиляции и кондиционирования воздуха для утилизации теплоты удаляемого из помещения вытяжного воздуха.

Потоки приточного и вытяжного воздуха подводят через соответствующие входные патрубки в перекрестноточные каналы теплообменного блока, выполненного, например, в виде пакета алюминиевых пластин. При движении потоков по каналам происходит передача теплоты через стенки от более теплого вытяжного воздуха к более холодному, приточному. Затем эти потоки выводят из теплообменника через соответствующие выходные патрубки.

По мере прохождения через теплообменник температура приточного воздуха снижается. При низкой температуре наружного воздуха она может достигнуть температуры точки росы, что ведёт к выпадению капельной влаги (конденсата) на поверхности, ограничивающие каналы теплообменника. При отрицательной температуре этих поверхностей конденсат превращается в иней или лёд, что естественно нарушает работу теплообменника. Для предотвращения образования инея или льда или их удаления в процессе работы данного теплообменника измеряют температуру в самом холодном углу теплообменника или (как вариант) разность давлений в канале вытяжного воздуха до и после теплообменного блока. При достижении предельного, заранее заданного значения измеряемым параметром теплообменный блок поворачивается на 180" вокруг своей центральной оси. Таким образом обеспечивается снижение аэродинамического сопротивления, затрат времени на предотвращение образования инея или его удаление и использование при этом всей теплообменной поверхности.

Задача заключается в снижении аэродинамического сопротивления потоку приточного воздуха, использование для процесса теплообмена всей поверхности теплообменника при проведении процесса предотвращения образования инея или его удаления, а также уменьшение затрат времени на проведение указанного процесса.

Достижению указанного технического результата способствует то, что параметром, по которому судят о возможности образования или наличии инея на поверхности холодной зоны теплообменника, служит либо температура его поверхности в самом холодном углу, либо разность давлений в канале вытяжного воздуха до и после теплообменного блока.

Предотвращение образования инея посредством нагрева поверхности подводимым в каналы с их выходной стороны при помощи поворота теплообменника на угол 180 о потоком вытяжного воздуха (при достижении измеряемым параметром предельного значения) обеспечивает постоянное аэродинамическое сопротивление потоку приточного воздуха, а также использование для теплообмена всей поверхности теплообменника в течение всего времени его работы.

Использование теплообменника-утилизатора дает заметную экономию средств на отопление помещений и снижает потери тепла, неотвратимо существующие при вентиляции и кондиционировании. А за счёт принципиально нового подхода к предупреждению образования конденсата с последующим появлением инея или льда, их полному удалению, значительно повышается эффективность работы данного утилизатора, что выгодно отличает его от других средств утилизации тепла вытяжного воздуха.

3. ТЕПЛООБМЕННИКИ-УТИЛИЗАТОРЫ ИЗ ОРЕБРЕННЫХ ТРУБ

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображений

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции - основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире . Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Затраты теплоты на подогрев санитарной нормы приточного наружного воздуха при современных методах теплозащиты ограждающих конструкций составляют в жилых домах до 80 % тепловой нагрузки на отопительные приборы, а в общественно-административных зданиях - более 90%. Поэтому энергосберегающие системы отопления в современных конструкциях зданий могут быть созданы только при условии

утилизации теплоты вытяжного воздуха на нагрев санитарной нормы приточного наружного воздуха.

Также успешен опыт применения в административном здании в Москве установки утилизации с насосной циркуляцией промежуточного теплоносителя - антифриза.

При расположении приточных и вытяжных агрегатов на расстоянии более 30 м друг от друга система утилизации с насосной циркуляцией антифриза является наиболее рациональной и экономичной. В случае расположения их рядом возможно еще более эффективное решение. Так в климатических районах с мягкими зимами, когда температура наружного воздуха не опускаются ниже -7 °С, широко применяются пластинчатые теплоутилизаторы.

На рис. 1 показана конструктивная схема пластинчатого рекуперативного (теплоотдача осуществляется через разделительную стенку) теплоутилизационного теплообменника. Здесь показан (рис. 1, а) «воздухо-воздушный» теплоутилизатор, собранный из пластинчатых каналов, которые могут изготавливаться из тонкой листовой оцинкованной стали, алюминия и др.

Рисунок 1. а - пластинчатые каналы, в которых сверху над разделительными стенками каналов поступает вытяжной воздух L y , а горизонтально-приточный наружный воздух L п.н; б - трубчатые каналы, в которых сверху в трубках проходит вытяжной воздух L y , а горизонтально в межтрубном пространстве проходит приточный наружный воздух L п.н

Пластинчатые каналы заключаются в кожух, имеющий фланцы для присоединения к приточным и вытяжным воздуховодам.

На рис. 1, б показан «воздухо-воздушный» теплообменник из трубчатых элементов, которые могут быть также изготовлены из алюминия, оцинкованной стали, пластмассы, стекла и др. Трубы закрепляются в верхние и нижние трубные решетки, что формирует каналы для прохода вытяжного воздуха. Боковые стенки и трубные решетки образуют каркас теплообменника, с открытыми фасадными сечениями, которые присоединяются к воздуховоду поступления приточного наружного воздуха L п.н.

Благодаря развитой поверхности каналов и устройства в них турбулизирующих воздух насадок в таких «воздухо-воздушных» теплообменниках достигается высокая теплотехническая эффективность θ t п.н (до 0,75), и это является главным достоинством таких аппаратов.

Недостатком этих рекуператоров является необходимость предподогрева приточного наружного воздуха в электрокалориферах до температуры не ниже -7 °С (во избежание замерзания конденсата на стороне влажного вытяжного воздуха).

На рис. 2 показана конструктивная схема приточно-вытяжного агрегата с пластинчатым утилизатором теплоты вытяжного воздуха L у на нагрев приточного наружного воздуха L п.н. Приточный и вытяжной агрегаты выполняются в едином корпусе. Первыми на входе приточного наружного L п.н и удаляемого вытяжного L у воздуха установлены фильтры 1 и 4. Оба очищенных потока воздуха от работы приточного 5 и вытяжного 6 вентиляторов проходят через пластинчатый теплоутилизатор 2, где энергия отепленного вытяжного воздуха L у передается холодному приточному L п.н.

Рисунок 2. Конструктивная схема приточного и вытяжного агрегатов с пластинчатым утилизатором, имеющим обводной воздушный канал по приточному наружному воздуху: 1 - воздушный фильтр в приточном агрегате; 2 - пластинчатый утилизационный теплообменник; 3 - фланец присоединения воздушного тракта поступления вытяжного воздуха; 4 - фильтр карманный для очистки вытяжного воздуха L у; 5 - приточный вентилятор с электродвигателем на одной раме; 6 - вытяжной вентилятор с электродвигателем на одной раме; 7 - поддон сбора из каналов прохождения вытяжного воздуха сконденсированной влаги; 8 - трубопровод отвода конденсата; 9 - обводной воздушный канал для прохода приточного воздуха L п.н; 10 - автоматический привод воздушных клапанов в обводном канале; 11 - калорифер догрева приточного наружного воздуха, питаемый горячей водой

Как правило, вытяжной воздух имеет повышенное влагосодержание и температуру точки росы не ниже +4 °С. При поступлении в каналы теплоутилизатора 2 холодного наружного воздуха с температурой ниже +4 °С на разделительных стенках установится температура, при которой на части поверхности каналов со стороны движения удаляемого вытяжного воздуха будет происходить конденсация водяных паров.

Образовавшийся конденсат под воздействием потока воздуха L у, будет интенсивно стекать в поддон 7, откуда по присоединенному к патрубку 8 трубопроводу отводится в канализацию (или бак-накопитель).

Для пластинчатого утилизатора характерно следующее уравнение теплового баланса переданной теплоты к наружному приточному воздуху:

где Q ту - утилизируемая приточным воздухом теплоэнергия; L у, L п.н - расходы отепленного вытяжного и наружного приточного воздуха, м 3 /ч; ρ у, ρ п.н - удельные плотности отепленного вытяжного и наружного приточного воздуха, кг/м 3 ; I y 1 и I y 2 - начальная и конечная энтальпия отепленного вытяжного воздуха, кДж/кг; t н1 и t н2 , с р - начальные и конечные температуры, °С, и теплоемкость, кДж/(кг · °С), наружного приточного воздуха.

При низких начальных температурах наружного воздуха t н.х ≈ t н1 на разделительных стенках каналов выпадающий из вытяжного воздуха конденсат не успевает стекать в поддон 7, а замерзает на стенках, что приводит к сужению проходного сечения и увеличивает аэродинамическое сопротивление проходу вытяжного воздуха. Это увеличение аэродинамического сопротивления воспринимается датчиком, который передает команду на привод 10 на открытие воздушных клапанов в обводном канале (байпасе) 9.

Испытания пластинчатых утилизаторов в климате России показали, что при снижении температуры наружного воздуха до t н.х ≈ t н1 ≈ -15 °С, воздушные клапаны в байпасе 9 полностью открыты и весь приточный наружный воздух L п.н проходит, минуя пластинчатые каналы теплоутилизатора 2.

Нагрев приточного наружного воздуха L п.н от t н.х до t п.н осуществляется в калорифере 11, питаемом горячей водой из центрального источника теплоснабжения. В этом режиме Q ту, вычисляемое по уравнению (9.10), равно нулю, так как через присоединенный теплоутилизатор 2 проходит только вытяжной воздух и I y 1 ≈ I y 2 , т.е. утилизация теплоты отсутствует.

Вторым методом предотвращения замерзания конденсата в каналах теплообменника 2 является электрический предподогрев приточного наружного воздуха от t н.х до t н1 = -7 °С. В расчетных условиях холодного периода года в климате Москвы холодный приточный наружный воздух в электрокалорифере нужно нагревать на ∆t т.эл = t н1 - t н.х = -7 + 26 = 19 °С. Нагрев приточного наружного воздуха при θ t п.н = 0,7 и t у1 = 24 °С составит t п.н = 0,7 · (24 + 7) - 7 = 14,7 °С или ∆t т.у = 14,7 + 7 = 21,7 °С.

Расчет показывает, что в этом режиме нагрев в теплоутилизаторе и в калорифере практически одинаков. Использование байпаса или электрического предподогрева значительно снижает теплотехническую эффективность пластинчатых теплообменников в системах приточно-вытяжной вентиляции в климате России.

Для устранения этого недостатка отечественными специалистами разработан оригинальный метод быстрого периодического размораживания пластинчатых теплоутилизаторов путем подогрева удаляемого вытяжного воздуха, обеспечивающий надежную и энергоэффективную круглогодовую работу агрегатов.

На рис. 3 показана принципиальная схема установки утилизации теплоты вытяжного воздуха X на нагрев приточного наружного воздуха L п.н с быстрым устранением обмерзания каналов 2 для улучшения прохода удаляемого воздуха через пластинчатый теплоутилизатор 1.

Воздуховодами 3 теплоутилизатор 1 соединен с трактом прохождения приточного наружного воздуха L п.н, а воздуховодами 4 с трактом прохождения удаляемого вытяжного воздуха L у.

Рисунок 3. Принципиальная схема применения пластинчатого теплоутилизатора в климате России: 1 - пластинчатый теплоутилизатор; 2 - пластинчатые каналы для прохода холодного приточного наружного воздуха L п.н и теплого вытяжного удаляемого воздуха L у; 3 - присоединительные воздуховоды прохода приточного наружного воздуха L п.н; 4 - присоединительные воздуховоды прохода удаляемого вытяжного воздуха L у; 5 - калорифер в потоке удаляемого воздуха L у на входе в каналы 2 пластинчатого теплообменника 1,6- автоматический клапан на трубопроводе подачи горячей воды G w г; 7 - электрическая связь; 8 - датчик контроля сопротивления воздушного потока в каналах 2 для прохода вытяжного воздуха L у; 9 - отвод конденсата

При низких температурах приточного наружного воздуха (t н1 = t н. x ≤ 7 °С) через стенки пластинчатых каналов 2 теплота от вытяжного воздуха передается полностью теплоте, отвечающей уравнению теплового баланса [см. формулу (1)]. Снижение температуры вытяжного воздуха происходит с обильной конденсацией влаги на стенках пластинчатых каналов. Часть конденсата успевает стечь из каналов 2 и по трубопроводу 9 удаляется в канализацию (или бак-накопитель). Однако большая часть конденсата замерзает на стенках каналов 2. Это вызывает возрастание перепада давления ∆Р у в потоке удаляемого воздуха, замеряемого датчиком 8.

При возрастании ∆Р у до настроенной величины от датчика 8 через проводную связь 7 последует команда на открытие автоматического клапана 6 на трубопроводе подачи горячей воды G w г в трубки калорифера 5, установленного в воздуховоде 4 поступления удаляемого вытяжного воздуха в пластинчатый утилизатор 1. При открытом автоматическом клапане 6 в трубки калорифера 5 поступит горячая вода G w г, что вызовет повышение температуры удаляемого воздуха t y 1 до 45-60 °С.

При прохождении по каналам 2 удаляемого воздуха с высокой температурой произойдет быстрое оттаивание со стенок каналов наледей и образующийся конденсат по трубопроводу 9 стечет в канализацию (или в бак-накопитель конденсата).

После оттайки наледей перепад давлений в каналах 2 понизится и датчик 8 через связь 7 подаст команду на закрытие клапана 6 и подача горячей воды в калорифер 5 прекратится.

Рассмотрим процесс утилизации теплоты на I-d диаграмме, представленный на рис. 4.

Рисунок 4. Построение на I-d-диаграмме режима работы в климате Москвы установки утилизации с пластинчатым теплообменником и размораживанием его по новому методу (по схеме на рис. 3). У 1 -У 2 - расчетный режим извлечения теплоты из вытяжного удаляемого воздуха; Н 1 - Н 2 - нагрев утилизируемой теплотой приточного наружного воздуха в расчетном режиме; У 1 - У под 1 - нагрев вытяжного воздуха в режиме размораживания от наледей пластинчатых каналов прохождения удаляемого воздуха; У 1. раз - начальные параметры удаляемого воздуха после отдачи теплоты на оттаивание наледей на стенках пластинчатых каналов; H 1 -Н 2 - нагрев приточного наружного воздуха в режиме размораживания пластинчатого утилизационного теплообменника

Проведем оценку влияния метода размораживания пластинчатых теплоутилизаторов (по схеме на рис. 3) на теплотехническую эффективность режимов утилизации теплоты вытяжного воздуха на следующем примере.

ПРИМЕР 1. Исходные условия: В крупном московском (t н.х = -26 °С) производственно-административном здании в системе приточно-вытяжной вентиляции смонтирована теплоутилизационная установка (ТУУ) на базе рекуперативного пластинчатого теплообменника (с показателем θ t п.н = 0,7). Объем и параметры удаляемого вытяжного воздуха в процессе охлаждения составляют: L у = 9000 м 3 /ч, t у1 = 24 °С, I y 1 = 40 кДж/кг, t р.у1 = 7 °С, d у1 = 6,2 г/кг (см. построение на I-d-диаграмме на рис. 4). Расход приточного наружного воздуха L п.н = 10 000 м 3 /ч. Размораживание теплоутилизатора производится методом периодического повышения температуры удаляемого воздуха, как это показано на схеме рис. 3.

Требуется: Установить теплотехническую эффективность режимов утилизации теплоты с использованием нового метода периодической оттайки пластин аппарата.

Решение: 1. Вычисляем температуру нагретого утилизируемой теплотой приточного наружного воздуха в расчетных условиях холодного периода года при t н.х = t н1 = -26 °С:

2. Вычисляем количество утилизируемой теплоты за первый час работы установки утилизации, когда обмерзание пластинчатых каналов не повлияло на теплотехническую эффективность, но повысило аэродинамическое сопротивление в каналах прохождения удаляемого воздуха:

3. Через час работы ТУУ в расчетных зимних условиях на стенках каналов накопился слой инея, который вызвал повышение аэродинамического сопротивления ∆Р у. Определим возможное количество льда на стенках каналов прохода вытяжного воздуха через пластинчатый теплоутилизатор, образованного в течение часа. Из уравнения теплового баланса (1) вычислим энтальпию охлажденного и осушенного вытяжного воздуха:

Для рассматриваемого примера по формуле (2) получим:

На рис. 4 представлено построение на I-d-диаграмме режимов нагрева приточного наружного воздуха (процесс H 1 - H 2) утилизируемой теплотой вытяжного воздуха (процесс У 1 -У 2). Построением на I-d-диаграмме получены остальные параметры охлажденного и осушенного вытяжного воздуха (см. точку У 2): t у2 = -6,5 °С, d у2 = 2,2 г/кг.

4. Количество выпавшего из вытяжного воздуха конденсата вычисляется по формуле:

По формуле (4) вычисляем количество холода, затраченного на понижение температуры льда: Q = 45 · 4,2 · 6,5/3,6 = 341 Вт · ч. На образование льда затрачивается следующее количество холода:

Общее количество энергии, идущей на образование наледей на разделительной поверхности пластинчатых теплоутилизаторов, составит:

6. Из построения на I-d-диаграмме (рис. 4) видно, что при противоточном движении по пластинчатым каналам приточного L п.н и вытяжного L у воздушных потоков на входе в пластинчатый теплообменник наиболее холодного наружного воздуха по другую сторону разделительных стенок пластинчатых каналов проходит охлажденный до отрицательных температур вытяжной воздух. Именно в этой части пластинчатого теплообменника и наблюдаются интенсивные образования наледей и инея, которые будут перекрывать каналы для прохода вытяжного воздуха. Это вызовет повышение аэродинамического сопротивления.

Датчик контроля при этом подаст команду на открытие автоматического клапана поступления горячей воды в трубки теплообменника, смонтированного в вытяжном воздуховоде до пластинчатого теплообменника, что обеспечит нагрев вытяжного воздуха до температуры t у.под.1 = +50 °С.

Поступление горячего воздуха в пластинчатые каналы обеспечило за 10 мин оттайку замерзшего конденсата, который в жидком виде удаляется в канализацию (в бак-накопитель). За 10 мин нагрева вытяжного воздуха затрачено следующее количество теплоты:

или по формуле (5) получим:

7. Подведенная в калорифере 5 (рис. 3) теплота частично расходуется на растаивание наледей, что по расчетам в п. 5 потребует Q т.рас = 4,53 кВт · ч теплоты. На передачу теплоты к приточному наружному воздуху из затраченной теплоты в калорифере 5 на нагрев вытяжного воздуха останется теплоты:

8. Температура подогретого вытяжного воздуха после затраты части теплоты на размораживание вычисляется по формуле:

Для рассматриваемого примера по формуле (6) получим:

9. Подогретый в калорифере 5 (см. рис. 3) вытяжной воздух будет способствовать не только размораживанию наледей конденсата, но и увеличению передачи теплоты к приточному воздуху через разделительные стенки пластинчатых каналов. Вычислим температуру нагретого приточного наружного воздуха:

10. Количество теплоты, переданной на нагрев приточного наружного воздуха в течение 10 мин размораживания, вычисляется по формуле:

Для рассматриваемого режима по формуле (8) получим:

Расчет показывает, что в рассматриваемом режиме размораживания нет потерь теплоты, так как часть теплоты подогрева из удаляемого воздуха Q т.у =12,57 кВт · ч переходит на дополнительный догрев приточного наружного воздуха L п.н до температуры t н2.раз = 20,8 °С, вместо t н2 = +9 °С при использовании только теплоты вытяжного воздуха с температурой t у1 = +24 °С (см. п. 1).

Просмотров