Как называется спокойное состояние моря. Общие сведения о ветре и волнении

Волнение на море , т. е. волны , образуется колебательными движениями частиц воды под воздействием каких-либо внешних сил. По своему происхождению различают следующие виды:

  • ветровые волны, образующиеся от воздействия ветра;
  • приливно-отливные, образующиеся под действием гравитационных сил Луны и Солнца;
  • нагонные, создаваемые в прибрежных местах и устьях рек постоянно дующими ветрами;
  • цунами, возникающие при подводных землетрясениях;
  • волны от движущихся судов.

Ветровые волны. Ветровые волны представляют из себя периодически следующие валы и впадины (рис. 7.38. ).

Рис. 7.38. Элементы волны

Верхняя часть вала называется гребнем, нижняя часть (впадина) - подошвой. Расстояние между двумя гребнями или подошвами называется длиной волны и обозначается буквой λ, а время, в течение которого проходят два гребня через одну точку - периодом волны. Расстояние по вертикали от подошвы до гребня называют высотой волны h, угол склона - крутизной α.

Под воздействием ветра форма волны отличается от синусоидальной и имеет пологий наветренный (со стороны ветра) склон и крутой подветренный (с противоположной стороны). При усилении ветра подветренный склон становится круче и начинает рассыпаться, образуя белые «барашки».

Ветровые волны зависят от величины водного пространства, глубины, скорости ветра и продолжительности его действия в одном направлении. На больших глубинах волны высокие, пологие и длинные и, наоборот, на малых глубинах волны короткие и крутые, опасные для небольших судов.

На больших водных пространствах высота волн возрастает по мере ее продвижения от наветренного берега к подветренному, при большом раскате волны могут быть достаточно большими даже при слабых ветрах. При взаимодействии набегающих волн с отраженными от крутого берега создается толчея - хаотические, различные по высоте и длине волны, представляющие опасность для малых судов.

Если берег пологий, то волна не отражается от него и, вследствие этого, имеет правильную форму. Набегая на пологий берег, по мере уменьшения глубины она увеличивается по высоте и крутизне и при выходе на берег опрокидывается. Такое волнение называется прибоем.

В открытом море в шторм высота волны может достигать 5-8 метров при длине 60-150 метров, а при очень сильных штормах и более. Высота волн на озерах и водохранилищах может достигать 2,5-4 метра.

На больших водных пространствах ветровые волны при сильных ветрах имеют, как правило, сложную структуру. На основные большие волны накладываются вновь образующиеся волны различной длины и высоты. Складываясь друг с другом и с основной волной, они могут приводить и к сглаживанию, и к значительному увеличению высоты гребня. Периоды основной и неосновных наиболее мощных волн могут совпасть так, что результирующий гребень может после спада постепенно нарастать до очень больших значений - так возникает пресловутый «девятый вал».

После прекращения ветра волнение сразу не прекращается - оно продолжает, затухая, двигаться в том же направлении, образуя так называемую зыбь (при полном отсутствии ветра - мертвую зыбь), причем, волны при этом могут достигать весьма большой высоты. В океане после прекращения шторма можно ожидать появления очень высоких и крутых «волн-убийц», способных расправиться не только с небольшими малотоннажными, но и с самыми крупными судами.

Кроме того, зыбь может вызвать сильную хаотическую качку судна с большой амплитудой колебаний. Такая качка грозит опрокидыванием и заливанием небольшим открытым мотолодкам и катерам, но особо опасна для судов с высокими надстройками или мачтами. Бывали случаи, когда на мертвой зыби отваливались расположенные на мачтах антенны и датчики приборов, рвался стоячий такелаж мачт на парусных яхтах, падали с палуб и мостиков за борт люди. Поэтому после прекращения шторма нельзя расслабляться и держать закрытыми люки до ослабления зыби.

Волны на акваториях портов. На акваториях портов образуется совокупность волн, приходящих из моря, собственных ветровых волн, волн, создаваемых судами и отраженных от причальных стенок и берегов. В результате сложения всех этих волн создается хаотическая толчея, опасная для небольших судов своей непредсказуемостью. К таким волнам трудно приспособиться, глубокие провалы и высокие гребни могут появиться перед судном совсем внезапно со всеми неприятными последствиями для небольшого открытого судна.

Приливы. Приливами называются периодические изменения уровня воды, вызываемые силами притяжения Луны и Солнца. Колебания воды в открытых бассейнах могут достигать 1 метра, а в вершинах заливов до 10-14 метров. Такие высокие колебания уровня воды встречаются в некоторых заливах Белого и Баренцева морей. Высший уровень воды называется полной водой, малый уровень - малой водой, а средний уровень - средней водой.

Приливы всегда вызывают приливно-отливные течения. Приливы имеют три вида - суточные, имеющие в период лунных суток (24 ч 50 мин) одну полную воду и одну малую; полусуточные, у которых за то же время сменяются две полные воды и две малые; смешанные - с переменой в течение половины лунного месяца периодов с полусуточных на суточные и обратно.

Сведения о приливах для планируемых районов плавания можно получить из «Таблиц приливов». С их помощью можно вычислить:

  • высоты и моменты полных и малых вод в основных портах на заданные сутки;
  • высоты уровня моря в портах на любой момент времени между полной и малой водой;
  • время, когда прилив достигает заданной величины.
Высота волн (от - до, м) Степень волнения в баллах Характеристика Признаки для определения состояния поверхности моря, озера, крупного водохранилища
Волнение отсутствует Зеркально-гладкая поверхность
До 0,25 I Слабое Рябь, появляются небольшие гребни волн
0,25-0,75 II Умеренное Небольшие гребни волн начинают опрокидываться, но пена не белая, а стекловидная
0,75-1,25 III Значительное Небольшие волны, гребни некоторых из них опрокидываются, образуя местами белую клубящуюся пену - «барашки»
1,25-2,0 IV То же Волны принимают хорошо выраженную форму, повсюду образуются «барашки»
2,0-3,5 V Сильное Появляются высокие гребни, их пенящиеся вершины занимают большие площади, ветер начинает срывать пену с гребней волн
3,5-6,0 VI То же Гребни очерчивают длинные валы ветровых волн; пена, срываемая с гребней ветром, начинает вытягиваться полосами по склонам волн
6,0-8,5 VII Очень сильное Длинные полосы пены, срываемой ветром, покрывают склоны волн, местами сливаясь, достигают их подошв
8,5-11,0 VIII То же Пена широкими плотными сливающимися полосами покрывает склоны волн, отчего поверхность становится белой, только местами во впадинах волн видны свободные от пены участки
11,0 и более IX Исключительное Поверхность моря покрыта плотным слоем пены, воздух наполнен водяной пылью и брызгами, видимость значительно уменьшена

Характеристика волн Мирового океана

Элементы морских волн, возникающих под действием ветра в океанах и морях, зависят не только от силы ветра, но и от продолжительности его действия, длины разгона и рельефа дна. Поэтому ветер одной и той же силы при различных конкретных условиях может вызывать различные волны. Наблюдаемые максимальные высоты волн в океанах значительно больше, чем в морях.

Высота волн в океане может доходить до 20 м. На морях они различны, например: в Северном - 9, Средиземном - 8, Охотском - 7

Ветровые волны высотой около 18 м наблюдались в Атлантическом океане при ветре 10-11 баллов и около 21 м при ветре 12 баллов.

Высоту волны 21 м наблюдали в Тихом океане во время продолжительного шторма ураганной силы.

В антарктических водах с дизель-электрохода «Обь» в 1958 году была измерена инструментально высота волны 24.5 м.

Наибольшая по высоте ветровая волна - 34 м была зафиксирована в Тихом океане.

Но такие высокие ветровые волны встречаются довольно редко. Так, для возникновения волны высотой 23 м необходимо, чтобы ветер со скоростью не менее 27 м/сек действовал, не меняя существенно своей скорости и направления, в течение 2-х суток на расстоянии 1200 морских миль (2200 км).

Решающее влияние на бурность моря оказывают:

> ограниченность акватории и степень расчлененности моря на отдельные бассейны, что препятствует росту и распространению ветровых волн;

> рельеф дна;

> возможность проникновения в данное море волн из соседних морей или океанов;

> развитие в море ледяного покрова;

> интенсивность, устойчивость и направление штормовых ветров, что связано с характером циклонической деятельности над морем.

Повторяемость волн высотой 6 м и более составляет 17-20% в наиболее бурных, штормовых акваториях океанов. В тропических зонах повторяемость таких волн не более 3-5%. На морях волны высотой 6 м и более встречаются достаточно редко. Но в Северном, Норвежском, Беринговом, Охотском морях средняя многолетняя повторяемость волн высотой 6 м и более составляет около 8%.

Наибольшая наблюденная высота ветровых волн в Черном море составляла 9 м.

Особо выделяется акватория Южного океана. Южнее 40 о ю.ш. повторяемость волн высотой более 3 м во все сезоны года не меньше 40%. Это известные «ревущие сороковые» широты.

Максимальные штормовые волны могут достигать длины около 400 м и, следовательно, распространяться до значительных глубин. Если принять в соответствии с теорией волн, что высота волны с глубиной уменьшается по экспоненциальному закону, можно вычислить, что при высоте волны на поверхности 15 м на глубине 100 м высота волны будет - 1.9 м, на глубине 150 м 0.7 м, на глубине

Географическое распределение волн в различных районах Мирового океана по сезонам (месяцам) дается в специальных пособиях.

Сейши, цунами, внутренние волны

Се́йши (фр. Seiche) - стоячие волны, возникающие в замкнутых или частично замкнутых водоемах. Выведенная из состояния равновесия какой-либо силой вода в замкнутом или полузамкнутом бассейне после прекращения действия этой силы для восстановления своего равновесия будет совершать свободные затухающие колебания - сейши.

Причиной возникновения сейшей является воздействие внешних сил - изменение атмосферного давления, ветер, сейсмические явления.

Сейши характеризуются большим периодом (от нескольких минут до десятков часов) и большой амплитудой (от единиц миллиметров до нескольких метров.

В реальных бассейнах из-за сложности очертаний и рельефа дна колебания уровня достаточно изменчивы. Сейши Балтийского моря имеют основной период около 27 ч, но у Кронштадта период составляет около 20 мин и высота сейши 7 - 8 см; у Клайпеды период около 3 ч и высота около 15 см. Примерно суткам равен период основной сейши на Азовском море с наибольшей наблюденной высотой около 80 см.

Короткопериодные сейши в портах создают сильные периодические течения, могущие даже сорвать корабли со швартовов. Это явление в портах Черного моря называется тягун.

Подводные землетрясения, вулканические извержения и оползни возбуждают колебания толщи воды , которые распространяются от очага образования как одиночные длинные волны или группы волн, названные в Японии цунами. Подходя к берегам, цунами увеличивают на мелководье высоту и нередко вкатываются на берег высокими мощными волнами, производящими катастрофические разрушения. В океане имеются обширные области дна с высокой сейсмичностью. Поэтому цунами отмечаются довольно часто. Ежегодно два-три из них производят катастрофические разрушения.

Основным районом возникновения цунами является сейсмический пояс Тихого океана, в котором происходит около 80% землетрясений, регистрируемых на земном шаре. Более всего разрушительным цунами подвержены берега Камчатки, Японии, Курильских и Гавайских островов.

В открытом океане волны цунами незаметны, однако они несут огромный запас энергии. Интенсивность цунами определяется величиной его магнитуды.

В области эпицентра землетрясения в момент возникновении цунами на глубокой воде имеет высоту 30-б0 см при длине волны до 300 км. В зависимости от характера землетрясения цунами распространяется от очага либо концентрическими, либо «направленными» волнами.

Длины волн цунами варьируют в широких пределах, в зависимости от характера землетрясения и расстояния, пройденного волной. Например, катастрофическое цунами на океанском побережье Японии 3 марта 1933 г. имело длину всего 17 км, а при Чилийском землетрясении 22 мая 1960 г. волны достигали длины 300 - 400 км. Периоды, как и длины волн, увеличиваются по мере их удаления от эпицентра. Например, при Алеутском землетрясении 1 апреля 1946 г. период цунами у берегов Канады был 9 мин, а, пройдя расстояние до Вальпараисо (9000 км), волны увеличили период до 18 мин.

При подводных землетрясениях образуется три вида волн: собственно цунами, сейсмические волны в земной коре и акустические волны в воде. Наибольшую скорость имеют, естественно, сейсмические волны. По ним и судят о приближении цунами. Акустические волны распространяются со скоростью, близкой к звуковой, и воспринимаются на кораблях как удары, часто приписываемые столкновению с мелью (в таких случаях «мели» часто наносились на карты, но впос­ледствии не подтверждались промерами).

Наблюдаемые скорости движения волн цунами в северной части Тихого океана в зависимости от положения эпицентров и рельефа дна по пути их распространения варьируют в открытом океане в пределах 400-800 км/ч. У берегов скорость цунами снижается до 30-100 км/ч.


Наблюдения и оценки последствий цунами показывают, что, например, при извержении вулкана Кракатау в августе 1883 г высота цунами на Зондских островах достигала 18 - 20 м; в ноябре 1952 г. на о. Парамушир высота цунами было не менее 10 м.

Еще большей высоты наблюдалось цунами в бухте Литуя (Аляска) в 1958 г., когда с высоты около 900 м в результате землетрясения в воду обрушилось примерно 300 млн. м 3 горных пород и льда. Ввиду небольших размеров бухты обвал вызвал всплеск высотой более 500 м. Волна высотой до 60 м опустошила берега бухты.

В настоящее время на основе исследований сейсмические волн и цунами разработана эффективная служба наблюдений и предупреждений о распространении цунами.

Течения - это горизонтально направленный поток воды, имеющи й определенную скорость и направление.

Течения подразделяются по различным признакам: силам, вызывающим их образование, направлению движения, устойчивости, физическим свойствам.

2 Подразделение течений по силам их вызывающим

В зависимости от сил, возбуждающих течения, они объединяются в следующие группы: 1) фрикционные, 2) гравитационно-градиентные, 3)приливные, 4) инерционные.

Фрикционные течения делятся на дрейфовые и ветровые, которые формируются при участии сил трения.

Ветровые течения вызываются временными и непродолжительными ветрами, наклона уровня при этом не происходит.

Дрейфовые течения создаются постоянными или длительно дующи ми ветрами и приводят к наклону уровенной поверхности (Северное и Южное Экваториальное или Пассатные течения Атлантического и Тихого океанов, Южное Экваториальное течение Индийского океана). Муссонные течения северной части Индийского океана, Антарктическое круговое, Арктический дрейф также являются дрейфовыми.

Основа теории дрейфовых течений была разработана шведским ученым Экманом в 1903-1905 гг., географическими выводами которой являются:

Поверхностные течения отклоняются от направления ветра в северном полушарии на 45° вправо, а в южном - на 45° влево. Отклонение дрейфовых течений от направления ветра обусловлено силой Кориолиса, возникающей при вращении Земли вокруг своей оси.

С увеличением глубины изменяются скорость и направление течения. Вектор скорости с глубиной отклоняется всё более вправо от направления ветра в северном полушарии и всё более влево в южном полушарии. На некоторой глубине глубинный вектор противоположен поверхностному.

Глубина, на которой течение имеет направление противоположное поверхностному, называется глубиной трения. Скорость течения на этом горизонте составляет около 4 % от поверхностной скорости.

Практически, чисто дрейфовые течения прекращаются на глубине 100-200 м в низких широтах и на 50 м на широте 50°.

7) Гравитационно-градиентные течения в зависимости от причин, создающих наклон поверхности моря, подразделяются на:

а) сгонно-нагонные, обусловленные нагоном и сгоном вод под действием

б) бароградиентные, связанные с изменением атмосферного давления. Рост (падение) атмосферного давления на 1 мб приводит к понижению (повышению) уровня моря на 1,33 см. Бароградиентные течения направлены из области более высокого стояния уровня (пониженное давление) в область с низким положением уровня (повышенное атмосферное давление);

в) стоковые течения формируются в результате наклона поверхности моря, вызванного притоком речных вод с суши (Обь-Енисейское и Ленское течения в Карском море и море Лаптевых, течение в Каспийском море, связанное со стоком Волги), атмосферными осадками, испарением, притоком вод из др. района или их оттоком. Разновидностью стоковых течений являются сточные течения, вызванные притоком вод из др. района (Флоридское течение, дающее начало Гольфстриму). Дрейфовое Карибское течение нагоняет в Мексиканский залив большую массу воды, где уровень повышается. Избыточные воды через Флоридский пролив устремляются сточным течением в Атлантический океан;

г) градиентные течения, обусловленные горизонтальным градиентом плотности воды, называются плотностными. Плотность воды в океане, в общем, увеличивается от экватора к полюсам. Примерами локальных градиентных (плотностных) течений служат придонные течения в проливах морей бассейна Атлантического океана - Босфоре и Гибралтаре. Разность солености вод (и плотности) между Черным (средняя S=22 0 / 0 о) и Мраморным (38-38,5 0 / 0 о) морями создает плотностное течение в Босфоре из Мраморного моря в Черное. В придонных слоях Гибралтара плотностное течение направлено из Средиземного моря (S=38-38,5 0 / 00) в Атлантический океан (S=36-37,5 0 / 00);

д) компенсационные течения, восполняющие убыль воды вследствие оттока. В результате оттока вод из восточных районов океанов иод действием пассатов создается дефици т массы, который восполняется компенсационным экваториальным противотечением. К компенсационным относят также Канарское, Бенгельское, Калифорнийское, отчасти Перуанское, поверхностные течения в проливах Босфор и Гибралтар, направленные соответственно в Мраморное и Средиземное моря.

8) Приливные течения, возникающие под воздействием приливообразующих сил Луны и Солнца. Они отличаются тем, что охватывают всю толщу воды. Изменение скорости от поверхности до дна происходит незначительно. Они характерны в узкостях (заливах, проливах) - скорость достигает до 5-10 м/с.

9) Инерционные течения - это остаточные потоки, наблюдающиеся после прекращения действия сил, вызвавших движение.

Зональные имеют направление близкое к ши ротному и перемещаются на восток или запад (Северные и Южные экваториальные течения Атлантического и Тихого океанов, Южное экваториальное течение Индийского океана, Арктический дрейф в Северном Ледовитом океане, Северо-Атлантическое и Северо-Тихоокеанское течения). Наиболее яркий пример зональных течений - Антарктическое круговое.

Меридиональные течения, связывающие зональные в единую систему. Они подразделяются на западные пограничные (Гольфстрим, Бразильское, Агульясово. Куросио, Восточно-Австралийское) - узкие и быстрые и восточные пограничные (Канарское, Бенгельское, Калифорнийское, Перуанское, Западно­Австралийское) - течения широкие и медленные.

4 По расположению выделяют противотечения в горизонтальной и вертикальной плоскости.

В горизонтальной плоскости - Межпассатные, Антило-Гвианское, Пассатные течения.

В вертикальной плоскости их называют подповерхностными (Перуанско- Чилийское, Калифорнийское, Кромвелла в Тихом океане, Ломоносова в Атлантическом океане, Тореева в Индийском океане, которое менее устойчиво из- за муссонных течений) или глубинными противотечениями (например, под Гольфстримом). Помимо них еще выделяют и придонные течения.

5 По времени действия (устойчивости) течения можно подразделить на постоянные, периодические и временные (случайные).

Постоянные течения отображены на карте - это большинство поверхностных течений, они сохраняют свои основные параметры (направление, скорость, расход).

Периодические или переменные течения связаны с изменением сил их формирующих. Муссонные течения северной части Индийского океана имеют западное направление в зимний период действия северо-восточного муссона и восточное - в летний сезон при действии юго-западного муссона. Периодическим является также связанное с муссонной циркуляцией Сомалийское течение, которое в период зимнего муссона направлено к югу, под действием летнего муссона оно изменяет направление и течет к северу, понижая при этом свою температуру. К переменным также относятся приливо-отливные течения, имеющие преобладающий суточный или полусуточный период.

Временные или случайные течения отражают изменчивость причин их вызывающих: кратковременные изменения ветра, уровня, плотности и др.

6 По характеру движения течения подразделяют на прямолинейные, криволинейные, циклонические и антициклонические.

7 По физико-химическим свойствам различают течения холодные, тёплые, опресненные, осолонённые и нейтральные.

Меридиональные течения, направленные от экватора к полюсам являются всегда теплыми, от субтропиков - всегда солёными и наоборот. Характер зональных течений определяется соотношением температуры или солёности вод течения и окружающих его вод. Если температура течения выше температуры окружающих вод, течения называют тёплым, если ниже - холодным. Аналогично определяются солёные и распреснённые течения. Нейтральные течения (например, пассатные в центральных частях океанов) несут воды, не отличающиеся от окружающих по температуре и солёности.

Влияние течений на климат. Прямое влияние течений, на климат проявляется чётко и хорошо изучено. Тёплые течения действуют смягчающе, несколько увеличивают продолжительность теплого сезона и годовое количество атмосферных осадков. Широко известно благоприятное влияние Гольфстрима и его продолжения Северного Атлантического течения на климат северо-западной Европы. Средняя температура января в Осло на 25-30° выше, чем на той же широте в Магадане. Безморозный период в Канаде - 60 дней, в Европе - 150-200 дней. Значительное влияние тёплое течение Куро-Сио оказывает на климатические условия побережья Тихого Океана, хотя оно слабее воздействия Гольфстрима и Северного Атлантического, поскольку проникает на север почти на 40° южнее. Кроме того, теплосодержание Куро-Сио существенно меньше указанных атлантических тёплых течений.

Холодные течения воздействуют на климат в сторону его похолодания, увеличения продолжительности холодного сезона и значительного уменьшения годового количества атмосферных осадков. На Канадском побережье, омываемом Лабрадорским течением между 55°и 70°с.ш. проходит годовая изотерма 0, -10°, на той же широте в Северной Европе изотерма 0, +10°. Эти свойства холодных течений оказывают решающее влияние на формирование пустынных областей

Земли (Канарское и пустыни северо-западной части Африки, Перуанское и пустыня Атакама и др.). Велико значение холодных течений Камчатского и Ойя- Сио на климат Курильской гряды и о.Хоккайдо. Их теплосодержание зависит от суровости зим в Беринговом и Охотском морях. Чем холоднее эти течения, тем прохладнее и пасмурнее лето, и соответственно, ниже урожайность риса в Японии.

Косвенное воздействие течений на климат проявляется через атмосферную циркуляцию и изучено недостаточно. Прежде всего, оно проявляется в том, что над тёплыми течениями формируются ложбины пониженного атмосферного давления, над холодными - отроги повышенного давления. Так, у побережья Северной Америки над Гольфстримом такая ложбина пониженного давления особенно выражена в зимнее время, поэтому господствующие здесь западные ветры усиливаются еще более, принося с материка охлажденные массы воздуха и создавая климатические условия более суровые, чем в северо-западной Европе, отепляемой тем же самым течением. Отроги высокого, давления над холодными течениями (Перуанское, Калифорнийское) определяют уменьшение сумм атмосферных осадков. Теплосодержание течений, расположение главных струй воздействует на развитие атмосферных процессов. Циклоны, проходя над акваториями с повышенной отдачей тепла в атмосферу, получают дополнительную энергию и возможность дальнейшего развития и перемещения. Циклоны, проходящие над сильно охлажденными акваториями, быстро растрачивают запасы тепла и прекращают существование.

Исследования влияния течений на климат через взаимодействие с атмосферой позволили установить следующие закономерности. Если теплосодержание Гольфстрима больше в его южной части, то погодно­климатические условия Европы не изменяются. Если же теплозапас Гольфстрима возрастает в его средней части, то зима в Европе будет холоднее обычного в результате обострения градиентов давления над ложбиной и увеличения повторяемости холодных западных, северо-западных и северных ветров. Потепление вод Гольфстрима вызывает похолодание побережья США в результате усиления муссонной циркуляции. При увеличении теплозапаса Гольфстрима в его северной части зимы в Европе будут теплее обычного, а в Гренландии - холоднее и тем более холодные, чем теплее Гольфстрим.

Наиболее яркий пример взаимодействия процессов, протекающих в океане и атмосфере - район холодного Перуанского течения и периодически возникающего тёплого течения Эль-Ниньо, открытого в 60-х годах. Этот мощн ый поток возникает один раз в 7-14 лет, когда обычный для этого района Тихого океана юго-восточный пассат ослабевает или даже отсутствует. В этом случае громадная масса теплой воды из западной части океана перемещается к западному побережью Америки и, приходя в столкновение с идущи м на север Перуанским течением, отклоняет его в открытое море. Этот поток на продолжении межпассатного течения формирует тёплое течение Эль-Ниньо, появление которого приводит к серьезным нарушениям метеорологической обстановки, условий обитания рыб, птиц, животного мира на огромных пространствах экваториальной области Тихого океана, островах и побережьях. Такая обстановка сложилась зимой 1982 г., когда интенсивность Эль-Ниньо превысила все известные до сих пор случаи. Под воздействием Эль-Ниньо температура вод, омывающих Галапагосские острова, достигла +30°С, т.е. на 5° выше нормы, стадо морских львов ушло в более холодные воды, причем была отмечена большая смертность. На Галапагосских островах в январе 1983 г. выпало за 2 недели сумма атмосферных осадков, превышающая их количество за предшествующие 6 лет. Аридные в период действия холодного Перуанского течения земли теперь покрываются буйной растительностью, чрезвычайное оживление наблюдается среди птиц, пресмыкающихся, особенно гигантских черепах, размножаются бабочки, слепни, москиты. Выпадение ливневых дождей в северном Перу и на побережье привело к гибели миллионов птиц, населяющих "гуановые острова" и т.д. Серьезные последствия этого явления проявились и в экономике Перу - резко упал вылов анчоуса. Влияние Эль-Ниньо не ограничилось только островами и западным побережьем Южной Америки. По мере ослабления пассатов повышалось атмосферное давление над Австралией, Индонезией, где засуха привела к неурожаям и голоду. В то же время над восточной частью Тихого океана в районе Калифорнии, Гавайев углубление области низкого давления отразилось в усилении штормовой деятельности, были отмечены беспрецедентно высокие приливы.

Таким образом, изменчивость тепла, переносимого океанскими течениями, определяет крупномасштабные аномалии в атмосфере, а они, в свою очередь оказывают обратное воздействие на океан. Количественное изучение этих процессов, их пространственной и временной изменчивости - важнейшие факторы предсказания долговременных аномалий погоды и изменений климата.

Приливы в Мировом океане

Приливы - это сердцебиение океана, пульс, ощущаемый во всем мире. Альберт Дефант немецкий океанограф

Приливами (приливными колебаниями уровня) в Мировом океане

называются динамические процессы в водах морей и океанов, вызванные приливообразующими силами Луны и Солнца.

Приливы наблюдаются не только в водной оболочке Земли. Установлены приливные колебания атмосферного давления и даже приливные деформации твердого тела Земли. С приливами в атмосфере и гидросфере связаны также электромагнитные явления.

На Земле приливы существовали задолго до того, как появились океаны. Притяжение Солнца порождало огромные приливы на поверхности Земли еще в те времена, когда она представляла собой расплавленную массу. Согласно одной из теорий даже образование Луны связывается с отрывом от Земли в результате сильного прилива части расплавленной массы.

В начале своего космического путешествия Луна была намного ближе к Земле, чем теперь. И в то время, когда земные испарения, сконденсировавшись во влагу, образовали океаны, приливы, порождаемые Луной, достигали огромной высоты.

По мере того как Луна отдалялась от Земли, приливы слабели и, наконец, стали такими, какими мы наблюдаем их сегодня. Но и теперь они испытывают заметные колебания. Каждые несколько столетий расположение Луны, Земли и Солнца относительно друг друга повторяется, что обуславливает длительные приливные циклы: около 550 года н. э. приливы были минимальны, в 1400 году они достигли максимума, а следующий минимум ожидается примерно в 2400 году.

В наши дни, по мере того как Луна неуклонно отдаляется от Земли, приливы продолжают незаметно ослабевать. Так будет продолжаться и дальше, и через многие миллионы лет лунные приливы исчезнут вовсе.

Кроме космических сил притяжения между Землей, Луной и Солнцем существенное влияние на величину и характер приливов оказывают физико-­географические условия моря или океана, очертания берегов, размеры, глубины, наличие островов и т.д. Если бы океан покрывал Землю сплошь слоем одинаковой глубины, приливы на одной и той же широте были бы одинаковыми и зависели бы только от приливообразующих сил Луны и Солнца.

Однако приливные колебания уровня на одной и той же широте меняются в весьма широких пределах. В одних районах, как, например, в заливе Фанди (Канада), приливные колебания уровня достигают 18 м, а в других - Балтийском море, расположенном на той же широте, они практически отсутствуют.

История исследования приливов

В древности приливы мало изучались. Цивилизации древних египтян, греков и римлян, от которых к нам дошли первые записи исторических фактов, развивались на берегах Средиземного моря, где приливы почти незаметны и потому практически не привлекали к себе внимания. Приливы и другие, связанные с океаном явления, не упоминаются и в Библии. Финикийцы, родная земля которых тянулась узкой полосой вдоль восточного побережья Средиземного моря, были самыми искусными мореходами древнего мира. Однако и они не оставили упоминаний о приливах, несмотря на то, что отваживались выходить в Атлантический океан, известный своими могучими приливами.

Первое упоминание о приливах относится приблизительно к 425 году до н.э. и принадлежит древнегреческому историку Геродоту, который, описывая залив у побережья Аравии (вероятно, Красное море), заметил: “Там каждый день отступает и наступает прилив”.

Первое описание приливов выполнил римский натуралист и писатель Плиний в 77 году н.э. в “Естественной истории”: “Многое было сказано о природе вод; но самое удивительное - это попеременное наступление и отступление приливов, проявляющееся по-разному, но всегда порождаемое Солнцем и Луной. Прилив дважды наступает и дважды отступает между каждыми двумя восхождениями Луны... ”Таким образом, Плиний впервые делает предположение о причинах приливов, отмечая их очевидную связь с фазами Солнца и Луны, хотя и он не был свободен от предрассудков.

К началу средних веков факт существования приливов и их связи с Луной стал общепризнанным

Однако в целом в эпоху средневековья приливы мало изучались.

С началом Эпохи Возрождения начали быстро развиваться науки и искусства, стал заметен прогресс и в науке о море. Особенно интенсивно она развивалась в Англии, и изучение приливов было неотъемлемой ее частью. Уже в XIII веке английские шкиперы вели специальные книги, в которые заносили сведения о приливах в Ла-Манше, о времени наступления полной и малой воды в важных портах и бухтах, о продолжительности подъема и спада воды. Эти книги, называемые “раттерами”, широко использовались в Англии в практике мореплавания. Первый печатный раттер вышел в 1528 году. С 1545 года стали использоваться круговые таблицы приливов (таблицы порта), содержавшие сведения о моментах наступления полной воды в определенном порту в зависимости от фазы Луны.

Но вплоть до работ Ньютона представление о причинах приливов оставалось неясным.

В 1687 году великий английский математик Исаак Ньютон опубликовал свои “Начала”, в которых изложил закон всемирного тяготения. Этот закон послужил важнейшим шагом к научному пониманию природы приливов. Этот закон гласит, что “каждые два тела притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними”.

Поскольку Луна и Солнце - ближайшие соседи Земли в пространстве, то их гравитационные силы, в зависимости от их положения относительно Земли, тем или иным образом воздействуют на воду и сушу на Земле. И суша, и вода испытывают на себе действие этих сил, но вода, будучи жидкой и более подвижной, реагирует на них сильнее.

В разработанной Ньютоном статической теории приливов их

возникновение объясняется различным притяжением Луной и Солнцем, по-разному удаленных от них частей земного шара. Поскольку Солнце более удалено от Земли, его приливообразующая сила в 2.17 раза меньше лунной. Поэтому лунная приливообразующая сила является основной в образовании приливов на Земле, а солнечная играет вспомогательную роль, но также должна приниматься во внимание.

Для упрощения расчетов Ньютон допустил, что Земля сплошь покрыта водой и имеет ровную поверхность. При таких условиях океан полностью покрывал бы ее слоем в 3.5 км толщины. Применяя закон всемирного тяготения, Ньютон установил, что воды такого океана будут притягиваться Луной, образуя под ней горб. И этот горб будет перемещаться вслед за Луной вокруг Земли в виде прогрессивной (т.е. меняющейся в пространстве и во времени по определенному закону) волны.

Притяжение Солнца действует на поверхность Земли точно таким же образом и тоже создает приливные горбы, которые иногда совпадают с выпуклостями, образуемыми действием Луны, а иногда нет. Это приводит к увеличению или уменьшению суммарного прилива.

Статическая теория Ньютона не позволяла понять все многообразие истинного поведения приливных явлений, например, почему в одних районах бывает два прилива в сутки, а в других - только один? И почему там, где бывает два прилива в сутки, они иногда равны по высоте, а иногда совершенно различны? Почему в географически близких районах приливы часто резко различаются по характеру и по высоте?

На эти вопросы статическая теория Ньютона ответов не давала.

В 1775 году Лаплас опубликовал работу- “динамическая” теория приливов, в которой приливы рассматриваются как волновое движение частиц воды в вертикальном и горизонтальном направлениях. Лаплас в рамках этой теории получил уравнения движения приливов на вращающейся Земле.

2.1. . Элементы приливов и терминология

2.1.1. Термины и определения

Прилив - подъем уровня при прохождении приливной волны 1 (рис. 16).

Отлив - падение уровня при прохождении приливной волны.

Малая вода (МВ) - минимальный уровень в продолжение одного периода приливных колебаний.

Период прилива - промежуток времени между двумя последовательными полными или малыми водами.

В зависимости от периода различают:

Полусуточные приливы, имеющие средний период, равный половине лунных суток (12 ч 25 мин), два минимума и два максимума уровня в сутки.

Суточные приливы со средним периодом, равным лунным суткам (24 ч 50 мин), имеющие один максимум и один минимум в сутки.

Смешанные приливы, у которых в течение половины лунного месяца период меняется с полусуточного на суточный.

Если преобладает полусуточный период, то такой смешанный прилив называют неправильным полусуточным (НП).

Если преобладает суточный период - неправильным суточным приливом

Высота прилива (h) - положение приливного уровня по отношению к нулю глубин. (В СССР отсчет высот уровня на морях с приливами велся от наинизшего, возможного по астрономическим условиям уровня - наинизшей малой воды. Этот уровень называют наинизшим теоретическим уровнем (теоретическим нулем глубин).

Амплитуда прилива (H) - высота полной или малой воды от среднего приливного уровня. (Так как приливы бывают не всегда симметричными относительно среднего уровня, то и амплитуды, определяемые по полной и малой воде, не всегда будут равны между собой).

Величина прилива (В, в) - разность уровней соседних полной и малой вод.

Время полной воды (tnB) - момент наступления полной воды.

Время малой воды (t МВ) - момент наступления малой воды.

Время роста (подъема) уровня (Тр) - промежуток времени, в течение которого происходит повышение уровня от малой до полной воды:

Тр = tnв - tim

Время падения уровня (Тп) - промежуток времени, в течение которого происходит падение уровня от полной до малой воды:

Тп = tMB - tnB

Продолжительность стояния уровня (Тс) - интервал времени, за который наблюдался уровень, равный заданной высоте или превышающий ее.

Лунный промежуток (Тл) - разность между моментом времени кульминации Луны на меридиане места и моментом наступления ближайшей полной воды.

Средний прикладной час (СПЧ) - средний из лунных промежутков не менее чем за половину лунного месяца.

Прикладной час порта (ПЧП) - средний из лунных промежутков в полнолуние и новолуние при среднем расстоянии Земли и Луны от Солнца и при нулевых склонениях Луны и Солнца.

Для смешанных приливов существуют дополнительные термины:

Высокая полная вода (ВПВ) - большая из двух полных вод за сутки при полусуточных приливах.

Низкая полная вода (НПВ) - меньшая из двух полных вод за сутки при полусуточных приливах.

Высокая малая вода (ВМВ) - большая из двух малых вод за сутки при полусуточных приливах.

Низкая малая вода (НМВ) - меньшая из двух малых вод за сутки при полусуточных приливах.

Суточное неравенство высот полных вод (СН hnb) - разность между высотами высокой и низкой полных вод.

Суточное неравенство высот малых вод (СН h MB) - разность между высотами высокой и низкой малых вод.

Большая величина приливов (В) - разность высот высокой полной и низкой малой вод в течение суток (В = ^ ПВ - Ь НМВ).

Малая величина приливов (в) - разность между низкой, полной и высокой малой водой (в = Ь. НПВ - Ь. ВМВ).

2.1.2. Классификация приливов

Основные виды изменчивости приливов в реальном явлении приливов представлены в совокупности. Поэтому наблюдаемые у берегов Мирового океана приливы отличаются значительным разнообразием.

В навигационных пособиях по приливам в основу их классификации положен ряд признаков:

> период прилива или количество полных и малых вод в лунные сутки как основной признак классификации;

> характер неравенств;

> симметрия в нарастании и спада уровня.

Эти признаки, в конечном счете, определяются соотношением амплитуд главных суточных и полусуточных составляющих прилива, которые могут быть представлены так называемыми гармоническими постоянными приливов - постоянными характеристиками гармонических составляющих кривой приливного колебания уровня: средними амплитудами и фазовыми углами.

Как количественный критерий для классификации приливов используется отношение суммы амплитуд главных суточных составляющих волн прилива Нк 1 и Но 1 к амплитуде Нм 2 главной полусуточной составляющей:

где к1 - лунно-солнечная деклинационная волна, о1 - главная лунная суточная волна, м2 - главная лунная полусуточная волна.

В зависимости от величины этого отношения выделяют несколько типов приливов:

Полусуточные приливы. В течение лунных суток бывают две полные и две малые воды (рис.17). Период равен половине лунных суток и составляет в среднем 12 часов 25 минут. Высоты следующих друг за другом полных и малых вод мало отличаются, то есть суточные неравенства почти отсутствуют. Подъем и падение уровня протекают правильно, ход уровня выражается симметричной синусоидальной кривой. Время роста и время падения уровня практически равны.


Полумесячные неравенства у полусуточных приливов связаны с фазами Луны. Приливы с большими амплитудами наблюдаются в дни полнолуния и новолуния (сизигийные приливы). Затем от сизигии величина приливов постепенно уменьшается и с переходом Луны в первую или третью четверть наступают приливы с малыми амплитудами (квадратурные приливы).

Наблюдаемые две полные и две малые воды в сутки следуют друг за другом через 12 часов 25 минут и поэтому наступают на 50 минут позже в каждые последующие сутки, так как лунные сутки длиннее земных. Это соответствует периоду кажущегося обращения Луны вокруг Земли.

Полусуточные приливы характеризуются величиной отношения:

Хорошо выраженные полусуточные приливы наблюдаются почти по всему Атлантическому океану (бухта Бальбоа на Панамском канале);

Смешанные приливы (0.5 < П < 4.0). Среди них различаются:

а) Неправильные полусуточные приливы:


Неправильные полусуточные приливы имеют в основном полусуточный характер. В течение лунного месяца сохраняются две полные и две малые воды в лунные сутки, но в некоторые дни второе колебание уровня настолько незначительно, что период явления можно только условно считать полусуточным (рис.18). Высоты смежных полных и малых вод сильно отличаются друг от друга. С увеличением склонения Луны суточные неравенства в высотах увеличиваются, приобретая максимальное значение в дни наибольшего северного или южного склонения Луны (тропические приливы). В такие дни вторые полные и малые воды могут быть выражены слабо.





к 2, тем сильнее сказывается склонение

Луны на величине прилива и тем больше проявляются суточные неравенства.

Подъем и падение уровня изображаются правильной кривой без перегибов, хотя большие суточные неравенства нарушают симметрию между высотами полных и малых вод. Это также создает разницу между временами роста и падения уровня.

Неправильные полусуточные приливы распространены в Индийском и Тихом океанах, типичный пример - устье реки Фрейзер на тихоокеанском побережье Канады.

б) Неправильные суточные приливы.

Неправильные суточные приливы характеризуются преобладанием в течение лунного месяца особенностей приливов суточного типа с одной полной и одной малой водой в лунные сутки (24 часа 50 минут) (рис.19). Но при прохождении Луны через экватор, когда склонение Луны близко к нулю, наблюдаются приливы с полусуточным периодом (то есть две полные и две малые воды в лунные сутки), имеющие малую амплитуду - это равноденственные приливы.

13 5 1 з а № tf П /? % 3 25 17 IS J?

Рис. 19. Неправильные суточные приливы (по Г.Н. Смирнову, 1981)

Полумесячные неравенства связаны со склонением Луны. При наибольших склонениях Луны величина приливов наибольшая (суточные неравенства в высотах смежных полных и малых вод быстро увеличиваются с увеличением склонения), они имеют характер правильных суточных - это тропические приливы При этом наблюдаются только одна полная и одна малая воды в лунные сутки, усложненные стояниями уровня.

С уменьшением склонения Луны величина приливов уменьшается и появляются вторые полные и малые воды, то есть приливы приближаются к полусуточному типу.

Изменение фаз Луны на величине прилива практически не сказывается. Hk 1 + Но 1

Чем ближе отношение -HM к 4, тем ближе неправильные суточные приливы к

суточным.

Неправильные суточные приливы чаще всего встречаются в бассейне Тихого океана, например, в устье реки Бангкок в Мьянме.

3) Суточные приливы.

Суточные приливы характеризуются одной полной и одной малой водой в течение лунных суток, то есть период явления равен суткам. Понятие о суточном неравенстве таких приливов не имеет смысла.

Полумесячные неравенства связаны со склонением Луны. При малых склонениях Луны амплитуды малы (равноденственные приливы) (рис.20). Во время прохождения Луны через экватор могут наблюдаться стояния уровня. В остальное время подъем и падение уровня определяется симметричной синусоидальной кривой.


Возрастание величин приливов начинается с увеличением склонения Луны и амплитуда приливов достигает наибольших значений в дни, когда Луна больше всего удалена от экватора - начинаются тропические приливы. Однако наибольшие приливы наступают не точно в момент достижения Луной наибольшего склонения, а спустя некоторое время - это возраст суточного прилива.

Суточные приливы встречаются редко, главным образом в морях Тихого океана (у побережья Китая, в некоторых местах у Аляски и Филиппин, у острова Хон-До во Вьетнаме), а также в Мексиканском заливе в порту Пенсакола во Флориде.

4) Аномальные приливы Их несколько типов.

а) Полусуточные солнечные приливы.

Полусуточные солнечные приливы имеют период, равный половине средних солнечных суток, то есть 12 часов. Поэтому полные и малые воды при полусуточных солнечных приливах наблюдаются всегда в одни и те же часы суток. Примером таких приливов могут служить приливы в Котабару (о. Калимантан) и Эйре (южное побережье Австралии).

б) Полусуточные параллактические приливы.

Встречаются очень редко. У полусуточных параллактических приливов аномально выражено параллактическое неравенство. В режиме этих приливов существенное значение имеет месячное неравенство, определяющееся изменением расстояния от Земли до Луны. При наименьшем расстоянии между Землей и Луной в течение месяца приливы наибольшие, а при наибольшем - наименьшие. Встречаются такие приливы у мыса Кларка в заливе Креста в Беринговом море.

в) Полусуточные мелководные приливы.

Отличаются от обычных полусуточных приливов характером подъема и спада уровня. Кривая изменений уровня при таких приливах не симметрична, и время роста и время падения могут значительно различаться между собой. Это различие тем больше, чем больше влияние мелководья. В различной степени нарушение правильного нарастания и падения уровня весьма распространено в приливах Белого и Северного морей. Неравномерности в изменениях уровня беломорские жители называют “манихой” (порт Кемь на Белом море, Россия). Также это явление характерно для портов Вильгельмсхафен (Северное море, ФРГ) и Шанхай (Восточно­Китайское море, Китай).

г) Двойные полусуточные приливы.

Двойные полусуточные приливы характеризуются тем, что вследствие влияния мелководья в течение суток бывает по четыре полных и четыре малых воды. Высоты следующих друг за другом полных и малых вод сильно различаются между собой, что создает двойные полусуточные неравенства. Величина приливов меняется в зависимости от фаз Луны.

Встречаются двойные полусуточные приливы редко. В частности, они наблюдаются в районе села Зимняя Золотница на Белом море, в портах Портленд в США и Саутгемптон на Ла-Манше в Англии.

К аномальным приливам относится и сравнительно редкое явление, известное в Англии под названием “бор”, во Франции - “маскарэ”, в Бразилии- “поророка или кулема”, у индейцев Амазонии - “амазуну” (гремящая вода), в Китае - “чау-дау” (большой прилив).

Бор наблюдается в устьях рек и представляет собой пример предельного искажения приливов под влиянием местных физико-географических условий. Вследствие тормозящего действия на приливную волну трения о дно, потока воды, выносимого рекой, и сужения устья сильно сокращается время роста. Передний достаточно крутой склон входящей в реку приливной волны становится почти отвесным и распространяется вверх по течению сплошной вертикальной стеной с грохотом, который слышен на много километров.

На Амазонке поророка наблюдается как водопад 2 километра длиной и до 7.5 м высотой, движущейся со скоростью 6 м/с вверх по реке на расстояние до 360 км, то есть дальше, чем на любой другой реке мира. Шум от него слышен на 30-40 км.

Другой знаменитый бор наблюдается в воронкообразном устье реки Фучуньцзян, впадающей в залив Ханчжоувань (Восточно-Китайское море) в Китае. Этот бор имеет фронт около 2 км в длину и от 4.5 до 7.5 м в высоту в зависимости от силы прилива. Подсчитано, что с этим бором, который движется вверх по реке со скоростью 22 км/ч, проносится почти 2 миллиона тонн воды. Рев его слышен за 30 км.

В Бенгалии (Индия) в устье рек Ганга, Брахмапутры и Мегхны в сизигию наблюдается бор высотой 9 м, распространяющийся со скоростью около 7.5 м/с.

Бор наблюдается также на реках Франции, на реках Северн и Трент в Англии, в заливе Кука на Аляске, на реке Птикодьяк в Канаде, впадающей в северную часть залива Фанди.

В устье реки Сент-Джон, также впадающей в залив Фанди, наблюдается интереснейшее явление - реверсивные водопады. При малой воде в заливе река низвергается в море через порог шириной 150 м. Когда прилив поднимается до уровня порога, воды залива и реки успокаиваются и наступает время затишья. А затем, когда прилив набирает полную высоту, вода начинает низвергаться в обратную сторону, перекатываясь через скалистую преграду; таким образом, водопад, обычно вливающийся в море, теперь низвергает свои воды вверх по течению реки. Эта картина повторяется дважды в сутки.

2.1.3. Неравенства приливов

Неравенства приливов - отклонения времени наступления полных и малых вод и величин приливов от их средних значений для данного места.

На практике это означает, что наблюдаемые величины прилива и время наступления полных и малых вод меняются ото дня ко дню, а в случае смешанных приливов - и в течение суток.

Неравенства приливов связаны с изменением положения Луны, Солнца и Земли. Так как приливообразующая сила Луны больше приливообразующей силы Солнца, основные неравенства связаны с изменениями взаимного положения Луны и Земли.

Выделяются следующие основные виды неравенств в явлении приливов: суточные, полумесячные, месячные (параллактические) и длиннопериодные.

3.3.1. Суточные неравенства

Всегда имеющаяся большая или меньшая разность высот двух последовательных полных или двух последовательных малых вод называется

суточным неравенством в высоте приливов.

Это неравенство проявляется также во времени наступления приливов относительно моментов верхней и нижней кульминации Луны.

Суточные неравенства зависят от:

> астрономических причин - склонения Луны и Солнца;

> физико-географических условий места (очертаний берега, характера рельефа дна, наличия островов и т.п.)

Согласно статической теории Ньютона, Луна и Солнце вызывают возникновение приливных горбов непосредственно под собой и на противоположной стороне Земли (рис. 21). Если бы Луна находилась прямо над
экватором, то в результате обращения Луны вокруг Земли два приливных горба двигались бы равномерно вокруг Земли в виде семейства двух волн, и теоретически в любой точке на экваторе в сутки имели бы место два прилива равной величины. Наблюдались бы две одинаковых по высоте полные и две малые воды.

Предположим, что мы переместились к северу (или к югу) от экватора, например, в точку А или В. Здесь также будут наблюдаться два равных прилива в сутки. Но эти приливы будут менее выраженными, так как точки А и В ближе к краям приливных горбов, чем к их серединам. И это относится к любой точке океана - равновеликие, правильные полусуточные приливы (период равен половине лунных суток - 12 часов 25 минут, две полные и две малые воды в сутки) становятся все менее выраженными в направлении от экватора к полюсам.

Все это было бы так, если бы положение Луны над экватором было неизменно. Но на самом деле этого нет.

Обращаясь вокруг Земли по своей 27% суточной орбите, Луна попеременно оказывается то к северу, то к югу от экватора. Над самим экватором она оказывается толъко при переходе из одного полушария в другое.


Таким образом, находясь над экватором или вблизи от него, Луна создает два раза в сутки одинаковые полные воды. По мере того, как Луна отклоняется к северу или к югу от экватора, неравенство между ними проявляется все больше. Это приводит в конечном итоге к полному исчезновению второй полной воды. Период приливов при этом превращается в суточный, а изменение уровня становится неравномерным за счет появления стояний уровня, зависящих, как и суточные неравенства, от изменений склонения Луны.

Солнце воздействует на приливы так же, как и Луна. Солнце во время своего кажущегося обращения вокруг Земли тоже отклоняется к северу и югу от экватора, что также приводит к неравной высоте двух последовательных полных или малых вод. Когда Солнце находится над экватором, полусуточные солнечные приливы должны быть равными, когда оно удаляется от экватора, то появляется разница между первой и второй полными и малыми водами, то есть суточное неравенство. Когда Солнце достигает максимального склонения, солнечные приливы

становятся суточными.

Нарушения хода уровня полусуточных приливов возникают и по другой причине.

В районах с малыми глубинами наблюдается уменьшение времени роста уровня при приливе за счет увеличения времени падения при отливе, или наоборот. Эти неравномерности в изменении уровня в некоторых местах достигают такого развития, что появляются дополнительные полные и малые воды. В этом случае полусуточные приливы превращаются в так называемые двойные полусуточные приливы. Однако вторые полные и малые воды при двойных полусуточных приливах обычно выражены слабо.

Очень важная особенность кривых хода уровня состоит в том, что они могут быть разложены на две простые составляющие, периоды которых относятся как 1:2. При этом одно колебание имеет суточный период, а второе - полусуточный. В случае мелководных приливов периоды составляющих волн оказывают равными четверти

В отношении суточных приливов с одной полной и одной малой водами в сутки понятие о суточном неравенстве смысла не имеет.

суток и полусуткам. При более тщательном анализе в суточной изменчивости приливных явлений выявляется присутствие колебаний и других периодов.

2.3.3.2. Полумесячные неравенства

Постепенное изменение характеристик приливных колебаний уровня и приливных течений, наблюдающихся от суток к суткам с полумесячной периодичностью, называется полумесячным неравенством приливов.

Полумесячные неравенства подразделяются на два вида:

> фазовые (связанные с изменением фаз Луны);

> тропические (связанные с изменением склонения Луны в течение месяца). Фазовые неравенства характерны для полусуточных приливов. Время

наступления приливов определяется в основном моментом кульминации Луны, который смещается каждые сутки вперед по времени в среднем на 50 минут. Приблизительно в течение полумесяца моменты верхней и нижней кульминаций Луны проходят через все часы суток. Затем цикл повторяется.

Соответственно за половину месяца через все часы суток проходит и время наступления полных и малых вод.

В зависимости от времени кульминации Луны меняется и величина приливов. В дни полнолуния и новолуния, то есть в сизигию, Луна и Солнце кульминируют одновременно (Луна кульминирует в 0 и 12 часов), располагаясь на одной линии с Землей, по одну сторону от нее или с противоположных сторон (рис. 23). Приливообразующие силы Луны и Солнца при этом складываются и создают приливы примерно на 20% выше обычного. Такие приливы называются сизигийными. Из-за влияния физико-географических условий наибольшие величины приливов наблюдаются не точно в сизигию, а спустя некоторое время. Интервал времени между полнолунием и новолунием и наибольшим приливом называется возрастом полусуточного прилива (лунным промежутком).


С изменением времени кульминации Луны связано также изменение величины лунных промежутков. Полумесячное изменение лунных промежутков определяет полумесячное неравенство во времени полных и малых вод наступления приливов.

Средний период фазового полумесячного неравенства равен 14.77 суток, так как время, протекающее между двумя полнолуниями или новолуниями (синодический месяц) равно в среднем 29.53 суток.

Тропические полумесячные неравенства характерны для суточных приливов и приливов, которые хотя бы на непродолжительное время в течение месяца становятся суточными.

Тропические неравештва связаны с изменениями склонения Луны

С увеличением склонения Луны увеличиваются суточные неравенства и величина приливов. Наибольшей величины приливы достигают при наибольшем склонении Луны. Такие приливы называются тропическими (Луна находится вблизи тропиков).

При склонении Луны равном нулю, величины приливов наименьшие и носят название равноденственных или экваториальных (Луна проходит через экватор).

Полный цикл изменений склонения Луны совершается на протяжении тропического месяца, который длится в среднем 27.32 сугок. Неравенство определяется только величиной склонения и не зависит от его знака. Поэтому период тропического неравенства в приливах равен половине периода тропического месяца, то есть в среднем 13.66 суток.

В зависимости от склонения Луны меняются также лунные промежутки, следовательно, тропическое неравенство сказывается также на времени наступления приливов.

Из-за влияния физико-географических условий тропические приливы отстают от момента наибольшего склонения Луны. Интервал времении между наибольшим склонением Луны и ближайшим наибольшим суточным приливом называется возрастом суточного прилива (возрастом тропического неравенства).

2.3.3.3. Месячные (параллактические) неравенства

Месячные неравенства обусловлены изменением расстояния от Земли до Луны (рис.25). Так как Луна обращается вокруг Земли не по идеальному кругу, а по эллипсу, то Луна то ближе к Земле, то дальше от нее. Период обращения Луны вокруг Земли называется аномалистическим месяцем и равен 27.55 суток. Для количественной оценки расстояния между Землей и Луной служит угловой показатель

Горизонтальный параллакс Луны, поэтому месячные неравенства называют также параллактическими.


Когда Луна максимально приближается к Земле, то есть находится в перигее (П), сила ее притяжения возрастает и прилив становится примерно на 20% выше обычного - перигейный прилив (рис. 6). Наименьшее расстояние между Землей и Луной (перигей), соответствует наибольшему значению горизонтального параллакса Луны.

По мере увеличения расстояния между Землей и Луной приливные колебания уменьшаются. Когда Луна достигает точки максимально удаленной от Земли - апогея (А), ее приливообразующая сила уменьшается и наблюдается прилив примерно на 20% ниже обычного - апогейный прилив. Наибольшее удаление Луны (А) характеризуется наименьшими значениями горизонтального параллакса Луны.

Кроме высоты приливов, месячные неравенства проявляются и в изменениях лунных промежутков, то есть времени наступления приливов.

Большие величины приливов при наименьшем расстоянии между Землей и Луной (перигей) и малые приливы при большом расстоянии между Землей и Луной (апогей) смещены относительно соответствующих астрономических условий на промежуток времени, называемый возрастом параллактического неравенства.

Иногда моменты сизигии и лунного перигея совпадают и можно наблюдать приливы необычайной высоты. Сизигийный прилив на 20% выше обычного, перигейный прилив также на 20% выше обычного. Когда они складываются, то создают прилив на 40% выше обычного - перигейно-сизигийный прилив. Соответственно, если квадратурный прилив совпадает с апогейным, то наблюдается противоположная картина - полная вода примерно на 40% ниже нормы - апогейно- квадратурный прилив.

2.3.3.4. Длиннопериодные неравенства

Длиннопериодные неравенства приливов связаны с кажущимся годовым движением Солнца.

Изменение склонения Солнца в течение года проявляется в приливах солнечным тропическим неравенством полугодового периода. С ним связаны изменения полугодового периода величин тропических и экваториальных приливов,


а также суточных неравенств. При максимальном склонении Солнца в смешанном солнечном приливе будет усиливаться суточное неравенство (тропический солнечный прилив).

Изменения расстояния от Солнца до Земли (параллакса Солнца) определяют солнечное параллактическое неравенство годового периода. Оно приводит к увеличению прилива на 10% в момент перигелия (минимального расстояния от Солнца до Земли) по сравнению с моментом афелия (максимального расстояния от Солнца до Земли).

Также в практике принимается во внимание медленное, с периодом 18.61 года, изменение склонения Луны вследствие наклона лунной орбиты к плоскости эклиптики на постоянный угол 5°08’. Связанное с этим многолетнее неравенство в приливах сказывается сравнительно небольшими изменениями полумесячных лунных тропических неравенств.

> Шкала волнения на море

Как это ни странно звучит, но шкал оценок волнения моря несколько. Однако, в основу каждой из шкал положен параметр, определяющий среднюю высоту Значительных Волн (SWH, от англ.: Significance Wave Height).

В американской шкале, значительными являются 30% самых крупных волн, в английской шкале -- 10%, а у нас всего три процента. Таким образом - одно и тоже волнение на море, в американской, английской и русской шкале может иметь разную величину баллов.

Как же измерить высоту волн? - К сожалению, никаких реальных приборов для этих измерений не существует. Поэтому единственный инструмент для моряка - собственные глаза.

9-балльная официальная шкала Всемирной Метеорологической организацией

Также, помимо официальной шкалы, принятой Всемирной Метеорологической организацией (англ. World Meteorological Organization), существуют шкалы имеющие графы, несущие информацию о силе ветра, что тоже имеет большое значение в морской навигации.

> Основные причины морских волнений

Основные виды волнений, их причины и последствия

К основным вида морских волнений можно отнести те, что оказывают наибольшее влияние на человека и его деятельность.

Самым главным и, наверное, самым известным видом таких волнений безусловно являются сейсмические волны - цунами.

Цунами - японское слово, означающее волну в гавани. Теперь оно применяется для обозначения гравитационных волн на поверхности воды, вызванных главным образом землетрясениями или явлениями, связанными с ними (например, оползнем), а также взрывами вулканических островов или ядерных устройств. Прежде эти волны назывались приливными (tidal waves), но это неверно, так как цунами не связаны с приливами. Другой хорошо распространенный термин «морские сейсмические волны» не включает волны от естественных и искусственных взрывов. Здесь можно пользоваться определением Ван Дорна: «Цунами - это японское название системы гравитационных волн, возникающих в море вследствие крупномасштабных непродолжительных возмущений свободной поверхности». Этим определением исключаются штормовые нагоны (ветровые приливы) и связанные с ними сейши 1 .

К зонам, подверженным цунами, относятся следующие: Япония, Азиатское побережье России (Камчатка, Сахара, Курилы), Алеутские острова, Аляска, Гавайи, западное побережье Южной Америки, США, и Канады, восточное побережье Канады, Новая Зеландия, Австралия, Французская Полинезия, Пуэрто-Рико, Виргинские острова, Доминиканская республика, Коста-Рика, Азорские острова, Португалия, Италия, Сицилия, берега Эгейского, Адриатического и Ионического морей, Греция, африканский берег восточного Средиземноморья, Индонезия и Филиппины. Серьезность и частота причиняемого цунами ущерба неодинаковы в разных местах.

Цунами возникают в следующих условиях. Тектонические процессы, протекающие в глубинах земли, вызывают появление разрывов в толще горных пород. Такие разрывы происходят, как правило, внезапно и сопровождаются землетрясениями. При разрывах, которые дают сбросы, надвиги и сдвиги, образуются смещения горных пород на поверхности земли, и соседние участки перемещаются по ним, причем иногда на десятки метров. Если подобные смещения происходят на дне океана, то, как в толще воды, так и на ее поверхности возбуждается волна, с большой скоростью распространяющаяся во все стороны от места возникновения.

1 Сейши (фр. Seiche) -- стоячие волны, возникающие в замкнутых или частично замкнутых водоемах. Сейши являются результатом резонансных явлений в водоеме при интерференции волн, отраженных от границ водоема. Причиной возникновения сейшей является воздействие внешних сил -- изменение атмосферного давления, ветер, сейсмические явления. Сейши характеризуются большим периодом (от нескольких минут до десятков часов) и большой амплитудой (от единиц миллиметров до нескольких метров).

В результате землетрясения 1 сентября 1923 г. в заливе Сагами (Япония) на площади около 150 км 2 одна часть дна резко поднялась (до глубины 230 м), а другая часть этой площади опустилась (до глубины 400 м). При этом в воде возникла высокая волна, ибо количество воды, вытесненной при поднятии, достигало, по вычислениям академика В.В. Шулейкина, 22,6 км 3 . Часть этой волны ушла в океан, а часть накатилась на берег в виде цунами. Высота волны на берегу достигала 10 м, но цифра эта сильно менялась в зависимости от рельефа побережья и глубин океана.

При землетрясении 1885-1886 гг. в Адриатическом море на дне также возникли сбросы с большой амплитудой смещения; в частности, они, явились причиной разрыва подводных кабелей. Цунами, однако, не наблюдалось, что следует объяснить в данном случае недостаточной скоростью движения масс по сбросам.

Причиной возникновения цунами может быть оползень. Цунами такого типа возникают довольно редко. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 900м. Ввиду относительной малости бухты (длина около 11км, максимальная глубина 200м) обвал вызвал всплеск воды высотой 520м. волна высотой до 60м опустошила берег. Подобного рода случаи весьма редки и, конечно, не рассматриваются в качестве эталона.

Другим источником цунами могут служить вулканические извержения. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются кальдеры, которые моментально заполняются водой, в результате чего возникает длинная и невысокая волна. Классический пример - цунами, образовавшееся после извержения Кракатау в 1883 году, находящийся в Зондском проливе Индонезийского архипелага. Во время его взрыва кроме массы пепла и сильнейшего землетрясения, зародилась волна высотой 30-40м. В течение нескольких минут все поселки, расположенные на низких берегах западной части Явы и юга Суматры, были смыты в море, погибло 30 500 человек. Со скоростью 556 километров в час волны цунами прокатились через Индийский океан и Тихий океаны, достигнув берегов Африки, Австралии и Америки. Даже в Атлантическом океане, несмотря на его изолированность и удаленность, в некоторых местах (Панама, Франция) отмечался подъем воды.

В наш век атомной энергии у человека в руках появилось средство вызывать по своему произволу сотрясения, раньше доступные лишь природе. В 1946 году США произвели в морской лагуне глубиной 60 м подводный атомный взрыв с тротиловым эквивалентом 20 тыс. тонн. Возникшая при этом волна на расстоянии 300 м от взрыва поднялась на высоту 28,6 м, а в 6,5 км от эпицентра еще достигала 1,8 м. Эксперименты дали возможность установить, какой именно гребень бывает наибольшим, а какой - наименьшим. морской волна цунами шкала

Наконец, еще один возможный источник цунами - падение в мировой океан космических объектов. Этот сценарий пока ограничивается исключительно компьютерными моделями, т. к. каких-либо исторических свидетельств подобных событий, к счастью, не зафиксировано. По мнению ученых, такие космические визиты происходят не чаще одного раза в 100 тыс. лет, причем за последние 200 тыс. лет этого не случилось ни разу. Тем не менее, в краткосрочном геологическом будущем вероятность космического удара не так уж и мала - по некоторым оценкам, около 1%. Согласно расчетам, падение в океан сравнительно небольшого астероида диаметром 300-600 метров сгенерирует цунами, многократно превосходящее все до сих пор известные. (Источник: http://soulhunterweb.narod.ru)

В соответствии с общей классификацией волн цунами относятся к длинным волнам. Длина их достигает несколько сотен километров, амплитуда над глубокой частью океана обычно порядка одного метра. Поэтому их трудно обнаружить с воздуха или с корабля.

В районе Тихоокеанского побережья Камчатки наблюдались цунами с длиной волны, равной 80-100 км. Притом, чем больше расстояние, отделяющее место землетрясения от этого побережья, тем больше длина цунами, хотя прямой пропорциональности здесь и нет. Чем дальше находится место землетрясения, тем больше будет промежуток времени между приходом цунами, следующих друг за другом.

Скорость распространения цунами, вообще говоря, очень велика и увеличивается с увеличением глубины океана. В месте зарождения (на больших глубинах) цунами, образовавшееся в результате землетрясения, представляет собой поперечную волну ничтожно малой высоты, распространяющуюся со скоростью

которая не может быть, видимо, даже измерена с достаточной степенью достоверности, так как глубина океана велика, а приращение (положительное или отрицательное) этой глубины в результате цунами чрезвычайно мало, тем более что длина определяется сотнями километров.

Для сравнения рассмотрим характеристики ветровых волн и волн цунами.

Цунами 2004 г.

Так же немалую роль в жизни человека играют приливы и отливы, именуемые в классификации волн, как приливные волны.

Приливом и отливом называется такое периодическое колебание уровня океана или моря, которое происходит от притяжения Луны и Солнца. Явление заключается в следующем: уровень воды постепенно поднимается, что называется приливом, достигает наивысшего положения, называемого полной водой. После того уровень начинает понижаться, что называется отливом, и через 6 час. 12,5 мин. (приблизительно) достигает наиболее низкого положения, называемого малой водой. Затем уровень снова начинает повышаться, и еще через 6 час. 12,5 мин. (приблизительно) наступает опять полная вода.

Таким образом, период явления равен 12 час. 25 мин. (приблизительно), и каждые 24--25 час. бывает два прилива и два отлива, две полные воды и две малые.

Расстояние от вертикали между уровнями последовательных полной и малой вод есть амплитуда прилива.

Если производить в том же месте наблюдения прилива в течение месяца, то окажется, что изо дня в день полная и малая воды изменяют свои положения. Два раза в месяц, в сизигии (полнолуние и новолуние), уровни полной и малой воды располагаются далее всего друг от друга, и тогда амплитуда прилива наибольшая, это случается каждые 14 дней (приблизительно). После момента сизигийных полных и малых вод уровни последующих полных и малых вод начинают приближаться друг к другу; первые располагаются все ниже и ниже, а вторые -- все выше и выше, и около времени квадратур (первая и последняя четверти) амплитуда прилива достигает наименьшей величины, что случается тоже каждые 14 дней (приблизительно).

Наблюдая моменты полных вод, нетрудно заметить, что они бывают около времени верхнего и нижнего прохождений Луны через меридиан места, а малые -- приблизительно посередине между этими моментами (т. е. когда Луна находится около первого вертикала). При этом каждая последующая полная и малая воды опаздывают относительно момента предшествовавшей в среднем на 12,5 мин.; таким образом, за сутки накопится около 50 мим. опоздания явления, т. е. столько же, как и опоздание прохождения Луны через верхнюю часть меридиана места.

В свою очередь наибольшие амплитуды бывают около времени фаз Луны, называемых сизигиями, а наименьшие -- около времени фаз Луны, называемых квадратурами.

Все эти обстоятельства были подмечены еще до нашей эры и тогда же привели к заключению, что явление приливов связано с Луной. Прошло, однако, более полуторы тысячи лет, пока нашли и сумели выразить научным образом зависимость между явлением приливов и Луной, это открытие было сделано Ньютоном на основании впервые им высказанных законов всемирного тяготения.

Наблюдая внимательно приливы или изучая таблицы тщательно произведенных наблюдений, нетрудно заметить еще некоторые особенности, представляющие уклонения от идеально правильного хода явления; но так как эти уклонения правильно повторяются, то они тоже суть характерные признаки явления.

Моменты полных и малых вод всегда опаздывают относительно времени прохождения Луны через меридиан. Промежуток времени между верхним или нижним прохождениями Луны через меридиан и моментами полной воды называется лунным промежутком, этот промежуток изменяется в некоторых пределах; среднее из многих лунных промежутков во время сизигий называется прикладным часом.

Лунные промежутки бывают меньше средних между новолунием и полнолунием и следующими за ними квадратурами. Лунные промежутки бывают больше средних между квадратурами и следующими за ними сизигиями.

Промежутки времени между полной и малой водами, а также малой и полной водами в действительности никогда не бывают равны между собой, но различаются иногда до 2 часов времени. Так же точно и промежутки времени между сизигийными и квадратурными приливами неравны между собой.

При большом удалении Луны от экватора, т. е. когда склонение Луны велико, все местные отклонения явления от его нормального хода увеличиваются в размерах.

Все эти особенности явления подтверждают преобладающее значение Луны в возбуждении явления приливов.

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов - все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление - ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал - 3 млрд. кВт.

Идея использования энергии приливов появилась у наших предков добрую тысячу лет назад. Правда, строили они тогда не ПЭС, а приливные мельницы. Одна из таких мельниц, упоминаемая еще в документах 1086 года, сохранилась в местечке Илинг, на юге Англии. В России первая приливная мельница появилась на Беломорье в XVII веке.

В ХХ веке ученые задумались над использованием потенциала приливов в электроэнергетике. Достоинства приливной энергии неоспоримы. Приливные станции можно строить в труднодоступных местах в прибрежной зоне, они не загрязняют атмосферу вредными выбросами в отличие от тепловых станций, не затапливают земель в отличие от гидроэлектростанций и не представляют потенциальной опасности в отличие от атомных станций.

Приливная электростанция (ПЭС) - электростанция, преобразующая энергию морских приливов в электрическую. ПЭС использует перепад уровней «полной» и «малой» воды во время прилива и отлива. Перекрыв плотиной, залив или устье впадающей с море (океан) реки (образовав водоём, называют бассейном ПЭС), можно при достаточно высокой амплитуде прилива (> 4 м) создать напор, достаточный для вращения гидротурбин и соединённых с ними гидрогенераторов, размещенных в теле плотины. При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно в течение 4--5 ч с перерывами соответственно 2--1 ч четырежды за сутки (такая ПЭС называется однобассейновой двустороннего действия). Для устранения неравномерности выработки электроэнергии бассейн ПЭС можно разделить плотиной на два или три меньших бассейна, в одном из которых поддерживается уровень «малой», а в другом -- «полной» воды; третий бассейн -- резервный; гидроагрегаты устанавливаются в теле разделительной плотины. Но и эта мера полностью не исключает пульсации энергии, обусловленной цикличностью приливов в течение полумесячного периода. При совместной работе в одной энергосистеме с мощными тепловыми (в т. ч. и атомными) электростанциями, энергия, вырабатываемая ПЭС, может быть использована для участия в покрытии пиков нагрузки энергосистемы, а входящие в эту же систему ГЭС, имеющие водохранилища сезонного регулирования, могут компенсировать внутримесячные колебания энергии приливов.

На ПЭС устанавливают капсульные гидроагрегаты, которые могут использоваться с относительно высоким кпд в генераторном (прямом и обратном) и насосном (прямом и обратном) режимах, а также в качестве водопропускного отверстия. В часы, когда малая нагрузка энергосистемы совпадает по времени с «малой» или «полной» водой в море, гидроагрегаты ПЭС либо отключены, либо работают в насосном режиме -- подкачивают воду в бассейн выше уровня прилива (или откачивают ниже уровня отлива) и таким образом аккумулируют энергию до того момента, когда в энергосистеме наступит пик нагрузки (рис. 1).

В случае если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме. Таким образом, ПЭС может использоваться в энергосистеме как пиковая электростанция.

В 1966 г. во Франции на реке Ранс (рис. 2) построена первая в мире приливная электростанция. Система использует двадцать четыре 10-мегаваттных турбины, обладает проектной мощностью 240 МВт и ежегодно производит около 50 ГВт*ч электроэнергии. Для этой станции разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС Ранс экономически оправдана. Годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений.

Другая крупная приливная электростанция мощностью 20 МВт расположена в Аннаполис-Ройал, в заливе Фанди (провинция Новая Шотландия, Канада). Она была официально открыта в сентябре 1984 г. Система смонтирована на о. Хогс в устье р. Аннаполис на основе уже существующей дамбы, защищающей плодородные земли от затопления морской водой в период штормов. Амплитуда прилива колеблется от 4,4 до 8,7 м.

В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт. Основоположниками этого проекта были советские ученые Лев Бернштейн и Игорь Усачев. Впервые в мировой практике гидротехнического строительства станция была возведена наплавным способом, который потом широко стал использоваться при строительстве подводных туннелей, нефтегазовых платформ, прибрежных ГЭС, ТЭС, АЭС и защитных гидротехнических комплексов.

В отличие от гидроэнергии рек, средняя величина приливной энергии мало меняется от сезона к сезону, что позволяет приливным электростанциям более равномерно обеспечивать энергией промышленные предприятия.

За рубежом разрабатываются проекты приливных электростанций в заливе Фанди (Канада) и в устье реки Северн (Англия) мощностью соответственно в 4 и 10 млн киловатт, работают небольшие приливные электростанции в Китае.

Пока энергия приливных электростанций обходится дороже энергии тепловых электростанций, но при более рациональном осуществлении строительства гидросооружений этих станций стоимость вырабатываемой ими энергии вполне можно снизить до стоимости энергии речных электростанций. Поскольку запасы приливной энергии планеты значительно превосходят полную величину гидроэнергии рек, можно полагать, что приливная энергия будет играть заметную роль в дальнейшем прогрессе человеческого общества.

Просмотров