Капиллярные силы формула. Поверхностное натяжение. Капиллярные явления. Высота поднятия жидкости в капиллярных трубках

Напряженное состояние поверхностного слоя жидкости, вызванное силами сцепления между молекулами этого слоя, называется поверхностным натяжением .

Сила поверхностного натяжения определяется по формуле F = al, где а - коэффициент поверхностного натяжения; l - длина контура, ограничивающего поверхность жидкости. Коэффициент поверхностного натяжения жидкости имеет порядок Н/м (для воды - 0,07, для спирта - 0,02).

Наличием поверхностной пленки обусловлено образование пены на воде, представляющей собой скопление мелких пузырьков воздуха под этой пленкой; пузырьки приподнимают пленку, не прорывая ее. Слипание мокрых волос, мокрых песчинок и т.п. также связано с жидкими пленками, с их стремлением приобрести минимальную поверхность.

На поверхностное натяжение большое влияние оказывают находящиеся в ней примеси. Например, мыло, растворенное в воде, уменьшает ее коэффициент поверхностного натяжения от 0,073 до 0,045 Н/м. Вещество, ослабляющее поверхностное натяжение жидкости, называется поверхностно-активным. Эти вещества находят самое широкое применение в жизни. По отношению к воде поверхностно-активными являются нефть, спирт, эфир, мыло и многие другие жидкости.

Явление поднятия или опускания уровня жидкости в узких трубках (капиллярах), в связи с действием дополнительного давления, где а - коэффициент поверхностного натяжения, a R - радиус кривизны трубки, обусловленной искривленной поверхностью, называется капиллярностью.

Капиллярными свойствами обладает всякое пористое тело, например, фильтрованная бумага, сухой мел, разрыхленная почва и т.д. Пористые тела легко пропитываются смачивающими жидкостями и удерживают их. Для несмачивающих жидкостей, наоборот, эти тела являются непроницаемыми. Капиллярные явления играют большую роль в природе и технике, например, для жизни растений, так как


способствуют поднятию воды и питательных растворов из почвы вдоль ствола растения. Процессы смачивания и капиллярности играют существенную роль и учитываются в текстильном производстве товаров для изготовления одежды.

Как известно, в процессе жизнедеятельности человеческого организма происходит постоянное выделение влаги, пота. Влага, (как жидкая, так и парообразная) собирается материалом одежды, а затем в зависимости от свойств этого материала перемещается внутри него и частично удерживается в нем, а частично выделяется наружу. Внутри пододежного пространства, как и в самих материалах одежды, непрерывно протекают капиллярные процессы, что решающим образом сказывается на комфортности и гигиеничности одежды.

На свободной поверхности жидкости происходит процесс испарения, при котором жидкость постепенно переходит в газообразное состояние. Процесс испарения состоит в том, что отдельные молекулы, находящиеся вблизи поверхности жидкости и имеющие более высокую, чем средняя, кинетическую энергию, преодолевают силы притяжения молекул и выходят за пределы жидкости. При этом молекула должна совершать работу против действия молекулярных сил, называемую работой выхода А в, а также работу Ад против сил внешнего давления (работа расширения). В связи с этим кинетическая энергия молекул уменьшается и переходит в потенциальную энергию молекул пара. Молекулы пара, находящиеся вблизи поверхности жидкости, могут притягиваться ее молекулами и вновь возвращаться в жидкость. Этот процесс называется конденсацией пара. На поверхности жидкости всегда происходят оба процесса: испарение и конденсация. Если количество испаряющихся и конденсирующихся молекул в единицу времени одинаково, то пар находится в динамическом равновесии с жидкостью, и такой пар называется насыщенным. На испарение массы т жидкости при постоянной температуре затрачивается количество теплоты Q n = m , где - удельная теплота испарения. Для воды при 0°С = 2,5-10 6 Дж/кг. При конденсации пара такое же количество теплоты выделяется.


Для ускорения испарения жидкости весьма важное значение имеет процесс удаления образующегося пара, что в природных условиях выполняет ветер.

Быстро испаряющиеся жидкости (аммиак, этиловый эфир, хлори­стый этил и т.д.) называются летучими. На этом принципе работает


бытовой холодильник. Принципиальная схема холодильного агрегата представлена на рис. 2.

В испарителе происходит испарение хладоагента. Рабочей жидкостью (хладоагентом) является фреон. Его формула CC1 2 F 2 . Под действием компрессора пары фреона поступают из испарителя в цилиндр компрессора и сжимаются адиабатически до давления в несколько атмосфер и нагреваются до температуры 30-40°С. Сжатый пар поступает в конденсатор, проходя через который, сжатый пар охлаждается до комнатной температуры и сжижается. Жидкость снова поступает в испаритель, и рабочий цикл холодильника повторяется. Цикл испарение-конденсация поддерживается с помощью компрессора, на работу которого затрачивается энергия, потребляемая из сети его двигателем (электромотором).

Испарение и конденсация играют исключительно важную роль в процессах влагооборота и теплообмена на земном шаре.

) — сила, обусловленная капиллярными явлениями. К капиллярным явлениям относятся поверхностные явления на границе жидкости с другой средой, связанные с искривлением ее .

Описание

Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму с наименьшим потенциалом сил поверхностного натяжения. Силы поверхностного натяжения создают под поверхностью раздела фаз дополнительное давление (капиллярное давление), величина которого определяется формулой Лапласа:

где - поверхностное натяжение, а - средний радиус кривизны поверхности.

В случае достаточно больших масс жидкости действие поверхностного натяжения компенсируется силой тяжести, поэтому капиллярные явления проявляются прежде всего в случае нахождения жидкости в узких каналах (капиллярах) и пористых средах.

В узком канале граница раздела жидкости с газом принимает искривленную форму (мениск), выпуклую в случае несмачивания жидкостью стенок капилляра и вогнутую в случае смачивания. Выпуклый мениск создает под своей поверхностью избыточное давление, вогнутый мениск - отрицательное давление (разрежение). Последнее явление заставляет жидкость затекать в капилляры со смачиваемыми стенками, в том числе против силы тяжести, что играет важную роль во многих биологических процессах. Капиллярные явления в пористых средах отвечают за распространение грунтовых вод, пропитывание жидкостями тканей и других волокнистых материалов (эффект фитиля). При взаимодействии двух шероховатых смоченных поверхностей вблизи локальных пятен контакта возникают мениски жидкости, приводящие к возникновению капиллярной .

Иллюстрации


Авторы

  • Горячева Ирина Георгиевна
  • Шпенёв Алексей Геннадьевич

Источники

  1. Capillary action // Wikipedia, the free Encyclopedia. -www.en.wikipedia.org/wiki/Capillary_action (дата обращения: 26.07.2010).
  2. Капиллярные явления // Химическая энциклопедия. Т. 2. - М.: Советская энциклопедия, 1990. С. 310–311.
  3. Капиллярные явления // Большая Советская энциклопедия. 3-е изд., 1969–1978.

Глава 3. Жидкости.

Строение жидкостей. Поверхностное натяжение.

По своим физическим свойствам жидкости занимают промежуточное положение между газами и твердыми телами. Для них характерна большая подвижность частиц и малое пространство между ними. Жидкости, как и твердые тела, способны сохранять свой объем и у них существует свободная поверхность. В то же время, жидкости, подобно газу, принимают форму того сосуда, в который они налиты, т.е. обладают текучестью.

Если твердые тела имеют строгую внутреннюю структуру, то структура жидкости является более рыхлой, т.е. между молекулами жидкости имеется свободное пространство, или так называемые «дырки». Согласно дырочной теории (теории Френкеля ), каждая молекула жидкости в течение некоторого промежутка времени колеблется около определенного положения равновесия. В какой-то момент времени она скачком перемещается в некоторое новое положение равновесия, отстоящее от предыдущего на расстоянии, сравнимом с размерами молекул. На ее месте появляется свободное пространство – дырка. То есть молекула медленно перемещается внутри жидкости, пребывая часть времени в положении равновесия, в так называемом «оседлом» состоянии.

Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю (рис. 3.1, а).

На молекулу, находящуюся вблизи границы раздела двух сред (лежащей на поверхности жидкости) вследствие неоднородности окружения действует сила, нескомпенсированная другими молекулами жидкости () и направленная внутрь жидкости перпендикулярно ее поверхности (рис. 3.1, б).

Таким образом, поверхностный слой жидкости производит на нее молекулярное давление, под действием сил которого молекулы жидкости стремятся перейти из поверхностного слоя в глубь жидкости. То есть, поверхностный слой жидкости представляет собой как бы эластичную растянутую пленку, охватывающую всю жидкость и стремящуюся собрать ее в одну «большую каплю». Это явление, характерное только для жидкостей, получило название поверхностного натяжения . Вследствие поверхностного натяжения жидкость стремится сократить площадь своего поверхностного слоя (свободной поверхности), в результате чего его площадь становится минимальной при данных условиях. Этим объясняется шарообразная форма маленьких капелек росы. Поверхность жидкости в широких сосудах на земле имеет плоскую форму вследствие действия силы тяжести.

Для увеличения (растяжения) поверхности жидкости необходимо совершить работу. При сокращении поверхности молекулярные силы сами совершают работу А . Таким образом, при растяжении поверхности жидкости потенциальная энергия W поверхности увеличивается, при сокращении – уменьшается. Та часть потенциальной энергии , которая может перейти в работу при изотермическом сокращении поверхности, называется свободной энергией поверхности жидкости. Можно показать, что

(3.1)

где – изменение площади поверхности, – коэффициент поверхностного натяжения.

Из (3.1) следует, что

То есть, коэффициент поверхностного натяжения можно определить как свободную энергию поверхности жидкости, приходящуюся на единицу площади этой поверхности. В этом случае выражается в джоулях на квадратный метр ().

Коэффициент поверхностного натяжения можно определить и как силу, действующую на единицу длины контура поверхности жидкости и стремящуюся сократить эту поверхность до минимума при заданном объеме фаз, т.е.

В системе СИ тогда измеряется в ньютонах на метр (Н/м ).

Коэффициент поверхностного натяжения зависит от температуры и рода жидкости, а также от природы и состояния той среды, с которой соприкасается данная поверхность жидкости. Примеси оказывают большое влияние на величину . Для чистой воды при комнатной температуре значение , растворение мыла в ней снижает величину до , а растворение поваренной соли, напротив, приводит к увеличению .

Вещества, адсорбирующиеся на поверхности жидкости и понижающие поверхностное натяжение, называются поверхностно – активными .

Коэффициент поверхностного натяжения определяется различными методами (методом отрыва капель, методом компенсации разности давления и т.д.). Прибор, используемый для определения биологических жидкостей (спинномозговой, желчи и др.) называется сталагмометр .

Роль поверхностных явлений в живой природе разнообразна. Поверхностная пленка воды является для многих организмов опорой для движения. Так, водомерки опираются на воду только конечными члениками широко расставленных лапок; лапка, покрытая воскообразным налетом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней. Секрет способности насекомого держаться на воде заключается в достаточно большом значении ее поверхностного натяжения (поверхностной энергии).

Всякое увеличение поверхности жидкости, например, при выливании воды в тарелку, при распылении воды в водопаде и при выбрасывании ее из брандспойта, сопровождается увеличением поверхностной энергии и охлаждением жидкости.

Наоборот, всякое уменьшение поверхности, например, когда капельки жидкости сливаются в одну большую каплю, сопровождается уменьшается поверхностной энергии и нагреванием жидкости.

Смачивание. Формула Лапласа. Капиллярные явления и их роль в природе.

На границе соприкосновения жидкости с твердым телом наблюдаются некоторые молекулярные явления.

Если силы сцепления между молекулами жидкости больше, чем между молекулами жидкости и твердого тела, то жидкость стремиться уменьшить границу (площадь) своего соприкосновения с твердым телом, по возможности отступая от него. Отсюда следует несмачивание твердого тела жидкостью.

Угол , образованный поверхностью твердого тела и касательной к поверхности

жидкости, отсчитываемый внутри жидкости, называют краевым углом. Для несмачивающей жидкости (рис 3.2). Когда - полное несмачивание.

Если силы сцепления между молекулами жидкости меньше, чем между молекулами жидкости и твердого тела, то жидкость стремиться увеличить границу соприкосновения с твердым телом. Отсюда следует смачивание твердого тела жидкостью.

В этом случае (рис. 3.3). При наблюдается полное смачивание.

Смачиваемость и несмачиваемость – понятия относительные: жидкость, смачивающая одно твердое тело, может не смачивать другое тело. Например, вода смачивает стекло, но не смачивает парафин, ртуть не смачивает стекло, но смачивает медь, цинк.

Листья и стебли растений не смачиваются водой, благодаря покрывающему их тонкому воскообразному налету – кутикуле . Именно поэтому не размокают под дождем листья деревьев, стога сена, скирды соломы и т.д.

Свободная поверхность жидкости, налитая в сосуд, в случае смачивания ею твердого тела будет вогнутой (рис. 3.4) и выпуклой (рис. 3.5) – в случае несмачивания .

Такая изогнутая поверхность называется мениском (от греческого слова – «менискос» - полумесяц).

Рис. 3.4 Рис. 3.5

Под криволинейной поверхностью мениска сила поверхностного натяжения, стремящаяся сократить эту поверхность, создает давление , дополнительное к давлению , действующему снаружи на жидкость. Это давление, называемое давлением Лапласа , зависит от и кривизны поверхности и определяется формулойЛапласа , которая в общем случае произвольной поверхности двоякой кривизны имеет вид:

(3.3)

где – коэффициент поверхностного натяжения;

– радиусы кривизны двух взаимноперпендикулярных нормальных сечений поверхности в данной точке (рис. 3.6)

Для сферической поверхности (рис. 3.4; 3.5) и

В случае плоской поверхности , тогда , т.е. силы поверхностного натяжения для плоской поверхности направлены вдоль поверхности и не создают дополнительного давления: давление внутри жидкости равно внешнему давлению.

В случае вогнутой поверхности будет отрицательно, т.е. давление внутри жидкости под вогнутой поверхностью меньше, чем внешнее давление на величину (оно равно: ) (рис. 3.7)

Огромна роль капиллярных явлений в биологии, так как большинство растительных и животных тканей пронизано громадным числом капилляров. Стволы деревьев, ветви растений пронизаны огромным числом капиллярных трубочек, по которым питательные вещества поднимаются до самых верхних листочков. Корневая система растений оканчивается тончайшими нитями – капиллярами. И сама почва, являющаяся источником питания для корня, может быть представлена как совокупность капиллярных трубочек, по которым, в зависимости от ее структуры и обработки, быстрее или медленнее, поднимается к поверхности вода с растворенными в ней веществами.

Высота подъема жидкости в капилляре тем больше, чем меньше его диаметр. Для сохранения влаги в почве, необходимо почву перекапывать, чтобы закрыть капилляры; для осушения почвы ее необходимо утрамбовывать.

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском . У смачивающей жидкости образуется вогнутый мениск (рис. 1, а), а у несмачивающей - выпуклый (рис. 1, б).

Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Для расчета избыточного давления предположим, что поверхность жидкости имеет форму сферы радиуса R (рис. 2. а), от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса .

На каждый бесконечно малый элемент длины этого контура действует касательная к поверхности сферы сила поверхностного натяжения, модуль которой . Разложим вектор на две составляющие силы . Из рисунка 2, а видим, что геометрическая сумма сил для двух выделенных диаметрально противоположных элементов равна нулю. Поэтому сила поверхностного натяжения направлена перпендикулярно плоскости сечения внутрь жидкости (рис. 2, в) и модуль ее равен

Избыточное давление, создаваемое этой силой

где - площадь основания сферического сегмента. Поэтому

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости (рис. 2, б) и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на ту же величину . Эта формула определяет лапласово давление для случая сферической формы свободной поверхности жидкости. Она является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

где - радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для цилиндрической поверхности избыточное давление .

Если поместить узкую трубку (капилляр ) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 3, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

На границе раздела жидкости с твердым телом возникают явления смачивания или несмачивания, обусловленные взаимодействием молекул жидкости с молекулами твердого тела:


Рис.1 Явления смачивания (а) и несмачивания (б) жидкостью поверхности твердого тела (— краевой угол)

Так как явления смачивания и несмачивания определяются относительными свойствами веществ жидкости и твердого тела, одна и та же жидкость может быть смачивающей для одного твердого тела и несмачивающей для другого. Например, вода смачивает стекло и не смачивает парафин.

Количественной мерой смачивания является краевой угол угол, образуемый поверхностью твердого тела и касательной, проведенной к поверхности жидкости в точке соприкосновения (жидкость находится внутри угла).

При смачивании и чем меньше угол тем сильнее смачивание. Если краевой угол равен нулю, смачивание называют полным или идеальным . К случаю идеального смачивания можно приближенно отнести растекание спирта по чистой поверхности стекла. В этом случае жидкость растекается по поверхности твердого тела до тех пор, пока не покроет всю поверхность.

При несмачивании и чем угол , тем сильнее несмачивание. При значении краевого угла наблюдается полное несмачивание. В этом случае жидкость не прилипает к поверхности твердого тела и легко скатывается с нее. Подобное явление можно наблюдать, когда мы пытаемся вымыть жирную поверхность холодной водой. Моющие свойства мыла и синтетических порошков объясняются тем, что мыльный раствор имеет меньшее поверхностное натяжение, чем вода. Большое поверхностное натяжение воды мешает ей проникать в мелкие поры и промежутки между волокнами ткани.

Явления смачивания и несмачивания играют важную роль в жизни человека. При таких производственных процессах, как склеивание, покраска, пайка очень важно обеспечить смачивание поверхностей. В то время, как обеспечение несмачивания очень важно при создании гидроизоляции, синтезе непромокаемых материалов. В медицине явления смачивания важны для обеспечения движения крови по капиллярам, дыхания и других биологических процессов.

Явления смачивания и несмачивания ярко проявляются в узких трубках - капиллярах .

Капиллярные явления

ОПРЕДЕЛЕНИЕ

Капиллярные явления - это подъем или опускание жидкости в капиллярах по сравнению с уровнем жидкости в широких трубках.

Смачивающая жидкость поднимается по капилляру. Жидкость, не смачивающая стенки сосуда, опускается в капилляре.

Высота h поднятия жидкости по капилляру определяется соотношением:

где коэффициент поверхностного натяжения жидкости; плотность жидкости; радиус капилляра, ускорение свободного падения.

Глубина , на которую опускается жидкость в капилляре, вычисляется по той же формуле.

ОПРЕДЕЛЕНИЕ

Изогнутую поверхность жидкости называют мениском .

Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в капилляре поднимается до тех пор. пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, это приводит к опусканию жидкости в капилляре.

Капиллярные явления мы можем наблюдать и в природе, и в быту. Например, почва имеет рыхлое строение и между ее отдельными частицами находятся промежутки, представляющие собой капилляры. При поливе по капиллярам вода поднимается к корневой системе растений, снабжая их влагой. Также находящаяся в почве вода, поднимаясь по капиллярам. испаряется. Чтобы уменьшить эффективность испарения, тем самым сократив потери влаги, почву разрыхляют, разрушая капилляры. В быту капиллярные явления используются при промокании влажной поверхности бумажным полотенцем или салфеткой.

Примеры решения задач

ПРИМЕР 1

Задание В капиллярной трубке радиусом 0,5 мм жидкость поднялась на 11 мм. Найти плотность данной жидкости, если ее коэффициент поверхностного натяжения .
Решение

откуда плотность жидкости:

Переведем единицы в систему СИ: радиус трубки ; высота поднятия жидкости ; коэффициент поверхностного натяжения жидкости .

Ускорение свободного падения .

Вычислим:

Ответ Плотность жидкости

ПРИМЕР 2

Задание Найти массу воды, поднявшейся по капиллярной трубке диаметром 0,5 мм.
Решение Высота поднятия жидкости по капилляру определяется формулой:

Плотность жидкости:

Объем столба жидкости, поднявшейся по капилляру, считаем как объем цилиндра с высотой и площадью основания :

подставив соотношение для объема столба жидкости в формулу для плотности жидкости, получим:

С учетом последнего соотношения, а также того, что радиус капилляра , высота поднятия жидкости по капилляру:

Из последнего соотношения находим массу жидкости:

Переведем единицы в систему СИ: диаметр трубки .

Ускорение свободного падения .

Коэффициент поверхностного натяжения воды .

Вычислим:

Ответ Масса воды, поднявшейся по капиллярной трубке кг.

Просмотров