Реакции нуклеофильного присоединения по карбонильной группе механизм. Реакции нуклеофильного присоединения (АN) к карбонильным соединениям. Окисление и восстановление органических соединений. а) Реакции с О-нуклеофилами

Нуклеофильное присоединение к алкинам инициируется под воздействием отрицательно заряженной частицы - нуклеофила . В общем случае, катализатором таких реакций являются основания. Общая схема первой стадии реакции нуклеофильного присоединения:

Типовые реакции нуклеофильного присоединения

· Характерным примером реакции нуклеофильного присоединения является Реакция Фаворского - присоединение спиртов в присутствии щелочей с образованием алкенильных эфиров:

· Первичные амины под действием оснований присоединяются к алкинам с образованием иминов :

По аналогии ацетилен реагирует с аммиаком, образуя этилиденимин :

При высокой температуре в присутствии катализатора имин дегидрируется и превращается в ацетонитрил:

· В среде очень сильных оснований (например: КОН+ДМСО) ацетилен реагирует с сероводородом, образуя дивинилсульфид :

Реакции радикального присоединения

В присутствии перекисей или других условиях, способствующих образованию свободных радикалов, присоединение к алкинам идет по радикальному механизму - против правила Марковникова(эффект Хараша):

По свободнорадикальному механизму* может протекать реакция алкинов с тиолами:

* - В присутствии оснований реакция идет по нуклеофильному механизму.

Аналогично происходит присоединение карбенов:

Реакции этинилирования

Реакциями этинилирования называют реакции увеличения углеродного скелета алкинов с сохранением тройной связи. Они могут протекать как по электрофильному, так и нуклеофильному механизму в зависимости от среды и условий реакции, характера субстрата, а также типа используемого катализатора.

Получение ацетиленовых спиртов

В присутствии сильных оснований алкины с концевой тройной связью способны присоединять карбонильные соединения с образованием спиртов (Реакция Фаворского):

Важнейшей реакцией из этой группы является присоединения формальдегида к ацетилену с образованием пропаргилового спирта и далее бутин-2-диола-1,4 * :

Получение ацетиленовых эфиров и кислот

Ацетиленовые кислоты или их эфиры можно получить по реакции Цужи :

Катализаторы: PdCl 2 , CuCl.

Реакции гидрирования

Гетерогенное гидрирование

Гидрирование алкинов водородом на гетерогенных катализаторах, как правило, приводит к образованию цис -присоединения . Катализаторами гидрирования служат Ni, Pd, Pt, а также оксиды или комплексы Ir, Ru, Rh и некоторых других металлов.



На первой стадии образуется алкен, который практически сразу же гидрируется до алкана:

Для остановки реакции на стадии получения алкена используют катализаторы Линдлара (Pd/PbO/CaCO 3) или борид никеля.

При гидрировании ацетилена на никель-кобальтовом катализаторе можно получить изобутилен:

Гомогенное гидрирование

Гомогенное гидрирование проводят в амидом натрия в жидком аммиаке или алюмогидридом лития в тетрагидрофуране. В ходе реакции образуются транс -алкены.

Гидроборирование

Алкины легко присоединяют диборан против правила Марковникова, образуя цис -алкенилбораны:

или окислить H 2 O 2 до альдегида или кетона .

Реакции нуклеофильного присоединения - реакции присоединения, в которых атаку на начальной стадии осуществляет нуклеофил - частица, заряженная отрицательно или имеющая свободную электронную пару.

На конечной стадии образующийся карбанион подвергается электрофильной атаке .

Несмотря на общность механизма различают реакции присоединения по связи углерод-углерод и углерод-гетероатом.

Реакции нуклеофильного присоединения более распространены для тройных, чем для двойных связей.

Реакции нуклеофильного присоединения по связи углерод-углерод

Нуклеофильное присоединение по кратной связи обычно двухстадийный процесс Ad N 2 - реакция бимолекулярного нуклеофильного присоединения:

Нуклеофильное присоединение по связи С=C встречается достаточно редко, и, как правило, если в соединении имеются электроноакцепторные заместители. Наибольшее значение имеет в этом классе реакция Михаэля:

Присоединение по тройной связи аналогично присоединению по связи С=C:


Реакции нуклеофильного присоединения по связи углерод-гетероатом Нуклеофильное присоединение по кратной связи углерод-гетероатом имеет механизм Ad N 2


Как правило, лимитирующей стадией процесса является нуклеофильная атака, электрофильное присоединение происходит быстро .

Иногда продукты присоединения вступают в реакцию отщепления, тем самым совокупно давая реакцию замещения:

Hуклеофильное присоединение по связи С=O очень распространено, что имеет большое практическое, промышленное и лабораторное значение.

Ацилирование ненасыщенных кетонов

Данный метод включает обработку субстрата альдегидом и цианид-ионом в полярном апротонном растворителе, таком, как ДМФ или Me 2 SO. Этот метод применим к a,b-ненасыщенным кетоном, сложным эфирам и нитрилам .

Конденсация сложных эфиров с кетонами


При конденсации сложных эфиров с кетонами выход?-дикетона невысок, около 40%, это объясняется побочной реакцией самоконденсации сложного эфира .

Гидролиз нитросоединений (Реакция Нефа)


Реакция Нефа - реакция кислотного гидролиза нитросоединений с образованием карбонильных соединений. Открыта в 1892 г. российским химиком М.И. Коноваловым и Дж. Нефом в 1894 г. Реакция Нефа заключается в гидролизе ацильных форм нитросоединений (нитроновых кислот), и поэтому в неё могут вступать первичные и вторичные алифатические и алициклические нитросоединения.

Реакция Нефа позволяет получить дикарбонильные соединения с выходом до 80-85 %. Для этого реакция проводится при pH=1, так как в менее кислой среде нитроновые кислоты изомеризуются обратно в нитросоединение со снижением конверсии нитросоединения, а в более кислой - повышается образование побочных продуктов. Данную реакцию проводят при t=0-5 0 C .

Взаимодействие кетонов с хлорангидридами в присутствии пиперидина


Хлорангидриды легко восстанавливаются до первичных спиртов под действием алюмогидрида лития. Но если енамин, полученный из кетона под действием пиперидина, вводить в реакцию с хлорангидридами, то после гидролиза первоначально полученной соли образуются b-дикетоны .

Реакции нуклеофильного присоединения (реакция-AdN)

Двойная связь в карбонильной группе сильно поляризована из-за большого различия в электроотрицательности кислорода и углерода. Электронная плотность смещена к атому кислорода и углеродный атом карбонильной группы проявляет электрофильные свойства. Поэтому для карбонильных соединений характерны реакции присоединения нуклеофилов к электронодефицитному атому углерода.

Лимитирующей стадией реакции является атака нуклеофильной частицы электрофильного углеродного атома карбонильной группы, с образованием связи за счет электронов нуклеофила. Одновременно происходит гетеролитический разрыв р-связи С=О, что приводит к образованию алкоксид-иона. При этом карбонильный углерод переходит в состояние sp 3 гибридизации.

Алкоксид-ион является сильным основанием и поэтому быстро протонируется с образованием нейтрального конечного продукта присоединения.

Если в реакцию вступает азотистый нуклеофил (амины, гидроксиламин, и т.д.), то образовавшийся нейтральный продукт присоединения подвергается дегидратации с образованием двойной связи между карбонильным углеродом и нуклеофильным агентом.

Нуклеофильное присоединение к карбонильной группе - процесс обратимый, за исключением реакций идущих с образованием спиртов и с присоединением металлоорганических соединений.

Альдегиды более реакционноспособны в реакциях присоединения нуклеофильных реагентов по сравнению с кетонами. Это связано с отсутствием стерических препятствий у альдегидов для атаки нуклеофильного агента. А в кетонах две алкильные группы создают пространственные затруднения для атаки нуклеофила и образования тетраэдрического продукта присоединения. Так же на низкую реакционную способность кетонов оказывает их более высокая термодинамическая стабильность по сравнению с альдегидами (теплота образования кетона ниже теплоты образования соответствующего альдегида).

протонированная форма

Основность альдегидов и кетонов невысока, однако она играет заметную роль в реакциях нуклеофильного присоединения, поскольку в протонированной форме электрофильность атома углерода значительно выше. Поэтому типичные для альдегидов и кетонов реакции AdN могут катализироваться кислотами.

2.2. Реакции нуклеофильного присоединения

Взаимодействие альдегидов и кетонов с нуклеофильными агентами осуществляется по следующему общему механизму:

Нуклеофил Z–Н (очень часто при нуклеофильном центре имеется атом водорода) присоединяется к электрофильному атому углерода карбонильной группы за счет неподеленной пары электронов нуклеофильного центра, образуя продукт, в котором на бывшем карбонильном кислороде находится отрицательный заряд, а бывший нуклеофильный центр заряжается положительно. Этот биполярный ион стабилизируется переносом протона от положительно заряженного атома Z (кислота Бренстеда) к отрицательно заряженному атому кислорода (основание). Образовавшийся при этом продукт часто претерпевает дальнейшие превращения, например, отщепление воды.

В качестве нуклеофилов могут выступать различные соединения, в которых в качестве нуклеофильных центров выступают атомы кислорода (О-нуклеофилы), серы (S-нуклеофилы), азота (N- нуклеофилы), углерода (С-нуклеофилы).

Реакционная способность альдегидов и кетонов в реакциях нуклеофильного присоединения зависит от электрофильности кар-

http://mitht.ru/e-library

бонильной группы: чем больше частичный положительный заряд на атоме углерода, тем легче происходит присоединение нук-

леофила . Поскольку в молекулах альдегидов при карбонильном атоме углерода содержится только один углеводородный остаток, проявляющий электронодонорные свойства, а в молекулах кетонов таких остатков два, то естественно предположить, что в общем случае в реакциях нуклеофильного присоединения альдегиды более реакционноспособны, чем кетоны . Электроноакцепторные заместители, особенно вблизи карбонильной группы, увеличивают электрофильность карбонильного углерода и, следовательно, повышают реакционную способность. Определенное значение имеет и стерический фактор: поскольку при присоединении атом углерода карбонильной группы изменяет гибридизацию (sp2 → sp3 ), то чем объемнее заместители при карбонильном атоме углерода, тем бóльшие пространственные затруднения возникают при этом переходе. Например, в ряду: формальдегид, уксусный альдегид, ацетон, трет -бутилметилкетон реакционная способность уменьшается.

(CH3 )3 C

а) Реакции с О-нуклеофилами

Гидратация

При взаимодействии альдегидов и кетонов с водой в обратимом процессе образуется гидрат – геминальный диол, который в большинстве случаев является очень нестабильным соединением, поэтому данное равновесие сильно смещено влево.

Однако для некоторых карбонильных соединений это равновесие может быть смещено вправо. Так, в водном растворе формальдегид практически полностью находится в гидратной форме (в отличие, например, от ацетона, в водном растворе которого гидратной формы чрезвычайно мало), а трихлоруксусный альдегид (хлораль) при взаимодействии с водой превращается в очень устойчивый даже в кристаллическом виде хлоральгидрат.

CH2 =O H 2 O CH2 (OH)58 2

http://mitht.ru/e-library

Cl3 CCH=O + H2 O Cl3 CCH(OH)2

хлораль хлоральгидрат

Взаимодействие со спиртами (реакция ацетализации)

Продукт присоединения к молекуле альдегида или кетона одной молекулы спирта – так называемый полуацеталь – неустойчив. При взаимодействии же альдегида или кетона с 2 эквивалентами спирта в кислой среде, то образуется устойчивый продукт –

ацеталь.

Приведем механизм последней реакции на примере взаимодействия уксусного альдегида с метиловым спиртом (1:2) в присутствии сильной кислоты Бренстеда.

Протонирование карбонильной группы уксусного альдегида приводит к образованию катиона, в котором положительный заряд делокализован. По сравнению с уксусным альдегидом этот катион более электрофилен, и нуклеофильное присоединение молекулы метанола к нему происходит значительно легче. Продукт присоединения (катион оксония) является сильной кислотой, и при отщеплении от него протона образуется полуацеталь (1-метоксиэтанол).

CH3 CH=O H

CH3 CH=O

HO CH3

CH3 CH OH

CH3 CH OH

CH3 CH OH

H O CH3

OCH3

http://mitht.ru/e-library

Далее через протонированную форму этого полуацеталя происходит отщепление воды с образованием карбокатиона, к которому присоединяется следующая молекула метанола. При депротонировании продукта присоединения образуется диметилацеталь уксусного альдегида (1,1-диметоксиэтан).

HO CH3

CH3 CH OH

CH3 CH O H

CH3 CH

OCH3

OCH3

OCH3

CH3 CH

OCH3

CH3 CH OCH3

OCH3

OCH3

Весь описанный процесс реакции, которую называют ацетализацией, обратим, поэтому эффективно провести взаимодействие альдегида или кетона со спиртом до ацеталя можно только, смещая равновесие вправо, например, удаляя образующуюся воду из сферы реакции. Обратная реакция представляет собой кислотный гидролиз ацеталя. Следовательно, в кислой водной среде ацетали неустойчивы, поскольку подвергаются гидролизу.

OCH3 + H2 O

CH3 CH=O + 2 CH3 OH

OCH3

В щелочной же среде ацетали устойчивы, поскольку гидролиз

в этих условиях произойти не может.

б) Реакции с S-нуклеофилами

Атом серы в аналогах спиртов – тиолах (меркаптанах) – является более сильным нуклеофилом, поэтому меркаптаны легче присоединяются к альдегидам и кетонам. При этом образуются продукты, аналогичные полуацеталям и ацеталям, например, при взаимодействии бензальдегида с двумя эквивалентами метантиола (метилмеркаптана) в кислой среде образуется диметилтиоацеталь бензальдегида.

2CH3 SH

CH(SCH3 )2

Являются производными углеводородов, в молекулах которых два атома водорода, находившиеся при одном атоме углерода, замещены атомом кислорода. Получающаяся таким путем группа >С=О называется карбонильной группой, или оксогруппой. Если карбонильная группа связана с одним водородным атомом и углеводородным радикалом (или с двумя атомами водорода), то такие соединения называют альдегидами, а группу - альдегидной, если карбонильная группа связана с двумя углеводородными радикалами, соединения называют кетонами, а группу - кетогруппой. Таким образом, альдегиды и кетоны представляют собой один класс органических веществ - оксосоединения.

Атомные орбитали углерода карбонильной группы находятся в состоянии sp 2 -гибридизации. Три гибридные орбитали, расположенные в одной плоскости под углом » 120 ° друг по отношению к другу, участвуют в образовании трех s- связей. Негибридная р-орбиталь атома углерода, расположенная перпендикулярно плоскости, в которой лежат s- связи, участвует в образовании p-связи с атомом кислорода. Двойная связь углерод-кислород полярная, электронная плотность смещена к более электроотрицательному атому кислорода, на котором возникает частичный отрицательный заряд, а на атоме углерода карбонильной группы - частичный положительный заряд:

Из этого следует, что характерной для карбонильной группы реакцией должна быть нуклеофильная атака по атому углерода. В молекулах карбонильных соединений, кроме электрофильного центра - атома углерода оксогруппы - есть и другие реакционные центры. Атом кислорода за счет неподеленной пары электронов выступает в реакциях как основный центр, реагируя с кислотами. Альдегиды и кетоны являются слабыми основаниями, концентрация протонированной формы карбонильного соединения достигает величин » 0,1-1% только в 60-80% серной кислоте.

В результате присоединения протона за счет образования s -связи О-Н возрастает электрофильность атома углерода оксогруппы и облегчается присоединение нуклеофильной частицы.

Гидратация кетонов возможна лишь в присутствии кислот или щелочей как катализаторов.

Механизм реакции гидратации при кислотном катализе:

На первом этапе протон присоединяется к атому кислорода карбонильной группы (за счет неподеленной пары электронов кислорода) с образованием оксониевого катиона, который на следующем этапе превращается в карбкатион, легко (за счет целого положительного заряда на углероде) подвергающийся нуклеофильной атаке молекулой воды. Образующийся оксониевый катион стабилизируется отщеплением протона (возврат катализатора).

Механизм реакции гидратации при основном катализе:

При проведении гидратации в щелочной среде гидроксид-ион атакует электрофильный атом углерода карбонильной группы с образованием оксониевого аниона, который далее стабилизируется путем отщепления протона от молекулы воды.

В отличие от большинства карбонильных соединений, 2,2,2-трихлорэтаналь (хлораль) легко реагирует с водой, образуя устойчивый продукт гидратации - хлоральгидрат, используемый в медицине и ветеринарии как успокаивающее и снотворное средство. Повышенная реакционная способность этого соединения объясняется сильным электроноакцепторным эффектом трихлорметильной группы, которая увеличивает эффективный положительный заряд на атоме углерода карбонильной группы, а также стабилизирует продукт реакции.

Реакции присоединения спиртов

В присутствии сухого хлороводорода альдегиды реагируют со спиртами, образуя ацетали. Промежуточно образующиеся полуацетали в большинстве случае в свободном виде выделить не представляется возможным. Необходимо отметить, что превращение полуацеталей в ацетали без кислотных катализаторов не происходит.

Превращение альдегидов в полуацетали происходит по механизму нуклеофильного присоединения А N , а последующее превращение полуацеталя в ацеталь представляет нуклеофильное замещение.

Необходимость использования кислотного катализа при превращении полуацеталей в ацетали обусловлена тем, что ОН-группа является плохо уходящей. Для превращения ее в хорошо уходящую группу - молекулу Н 2 О - используют кислоты в качестве катализаторов.

В случае реакций кетонов со спиртами положительный заряд на атоме углерода карбонильной группы оказывается недостаточным для непосредственной атаки молекулой спирта, и кетали одноатомных спиртов таким путем получить нельзя. Их получают с использованием ортоэфиров муравьиной кислоты.

Реакции образования полуацеталей и ацеталей характерны для природных гетерополифункциональных соединений - углеводов. Моносахариды являются, как правило, полигидроксиальдегидами или полигидроксикетонами, внутри молекул которых между гидроксильной и карбонильной группами происходит взаимодействие, приводящее к образованию гетероцикла:

Циклические формы моносахаридов являются циклическими полуацеталями или циклическими полукеталями. Образование олигосахарид ов и полисахаридов представляет собой реакцию образования ацеталя, повторяющуюся многократно:

Полисахариды, как ацетали, подвергаются гидролизу только в кислой среде.

Присоединение меркаптанов RSH к альдегидам и кетонам приводит к образованию, соответственно, тиоацеталей. Способность молекул меркаптанов эффективно атаковать атом углерода карбонильной группы кетонов отражает большую склонность RSH (по сравнению с ROH) к образованию эффективных нуклеофилов RS - , т.е большую кислотность тиолов по сравнению со спиртами.

Просмотров