Стальные фермы из квадратных труб. Технология изготовления строительной фермы из прямоугольных труб

Строительство ферм на основе технологии с применением прямоугольных и круглых труб позволяет значительно сократить металлоемкость и трудоемкость работ, а также снизить время, затрачиваемое на возведение постройки. Технология может применяться как для зданий промышленного, так и общественного-бытового характера. Расчет материалов и различных соединений основывается на сфере применения конструкции, воздействии внешних факторов и других особенностях. Фермы из прямоугольных труб - перспективное направление в строительстве различных объектов, которое имеет массу преимуществ перед своими аналогами.

Конструкция фермы

Основу фермы составляют стержни или трубы, которые стыкуются в определенных местах, образуя неизменную геометрическую конструкцию. Метод возведения фермы из круглых труб позволяет более рационально распределить материал по всей конструкции и снизить затраты на возведение постройки. К примеру, строительство при помощи балок требует более значительных вложений, а сам процесс является трудоемким и непрактичным.

Условно любую ферму можно разделить на три основных элемента: верхний пояс, нижний пояс и обрешетку. Таким образом, расстояние между опорами обрешетки будет называться пролетом, а между стойками и раскосами - панелью. Все фермы классифицируются в зависимости от назначения и по видам поясов. По назначению фермы из металлоконструкций можно разделить на следующие типы:

  1. Для мостовых сооружений.
  2. В качестве стропильной системы.
  3. Эстакадные.
  4. Конструкции для грузоподъемной стационарной техники.

По видам поясов фермы классифицируются на:

  1. Параллельные.
  2. Арочные.
  3. Треугольные.
  4. Полигональные.

Треугольная решетка является одним из самых простых в исполнении способов. Но, в том случае, если на пояс влияют какие-либо факторы, создающие определенные усилия, пояс может усиливаться дополнительными стойками.

В зависимости от количества стоек и общей территории фермы их можно классифицировать на легкие и тяжелые, а по сложности общей конструкции металлоконструкции могут быть обычными, комбинированными или с предварительным усилием. Сечения различных частей фермы, как правило, соединяют при помощи спаренных уголков. Если к сечению применить и другие виды уголков, то можно получить конструкцию, которая будет обладать высокими показателями жесткости и надежности в различных плоскостях. Стержни, в свою очередь, соединяются при помощи фасонок.

Изготовление ферм трубчатым методом позволяет сократить расходы материала и меньше поддается воздействию коррозии. Единственное, что может вызвать сложность во время возведения фермы - это трудоемкая фиксация всех трубчатых элементов.

Конструкции стропильных систем

В свою очередь, стропильные конструкции можно классифицировать по видам нагрузок:

  1. Нагрузки от собственного веса, а также веса кровли и кровельного покрытия.
  2. Переменные нагрузки от атмосферных осадков и других факторов.
  3. Другие виды нагрузок.

При расчете нагрузок от кровли, кровельных материалов и собственного веса все усилия принимаются равнораспределенными, оказывающими давление на всю поверхность фермы. В случае, если в сложных конструкциях высота пролетов значительно отличается, то следует учесть, что некоторые зоны будут получать значительные нагрузки от скатываемого снега. Усилия в стержнях рассчитываются при помощи графических расчетов или различных аналитических способов. К примеру, фермы с наклонными поясами рассчитываются путем составления диаграмм, в которых четко определены опорные реакции и расстояния между стержнями.

В нестандартных случаях, когда усилия не совпадают с различными узлами, они определяются от общего коэффициента нагрузки. Жесткость и устойчивость квадратных стержней проверяется во всей плоскости, чтобы своевременно определить зоны неустойчивости и усилить их различными элементами. Растянутые стержни могут плохо противостоять нагрузкам и создавать провисы от собственного веса. Все показатели гибкости ограничиваются различными нормами, которые зависят от их длины и других характеристик. Устойчивость можно обеспечить при помощи элементов связи, которые стыкуются с верхними и нижними поясами. Конек комплектуется специальной распоркой, которая будет гарантировать отличную стабильность в процессе возведения. Нижний пояс следует отдельно оборудовать элементами связи.

Решетчатые конструкции чаще всего используются при возведении спортивных залов и других мест общественного назначения. К примеру, к таким местам можно отнести пассажирские вокзалы, павильоны рыночных площадей. С давних пор при помощи решетчатых ферм стали производить ангары для хранения различной техники, так как подобные конструкции имеют отличную прочность и идеально справляются с нагрузками всевозможных факторов.

Проектирование такого объекта будет осуществляться строго с учетом особенностей расположения и условий возведения здания. Такие крупногабаритные постройки требуют грамотного расчета расположения стоек, поясов, решетчатых элементов, чтобы нагрузка не помешала оптимальному функционированию здания.

Конструкции с параллельным расположением поясов производятся с треугольной решеткой, а их высота будет напрямую зависеть от высоты пролета. Такие фермы не поддаются транспортировке при помощи железнодорожной техники, так как имеют значительную высоту и не разбираются по отдельным конструктивным элементам. Соединения выполняются при помощи сварочного оборудования или резьбовых элементов.

Метод предварительного напряжения применяется в решетчатых фермах, которые могут использоваться в различных сферах. Предварительная нагрузка может осуществлять при помощи материалов, имеющих высокие показатели прочности и надежности. Данный метод позволяет значительно расширить диапазон применения, так как использование конкретного материала позволяет регулировать эффект действия нагрузок. По виду расположения растяжек такие конструкции можно разделить на два типа, которые будут отличаться по некоторым признакам, определяющим условия и качество эксплуатации:

  1. Когда растяжки применяются в наиболее нагруженных местах и служат для снятия нагрузки с зон значительных воздействий.
  2. Когда растяжки применяются на территории всего пространства или отдельных частей и влияют на напряжение одного или нескольких стержней.

Несомненно, второй тип имеет ряд значительных преимуществ и позволяет разнообразно применить предварительную нагрузку в зависимости от расположения конструктивных элементов.

В заключение стоит отметить, что процесс монтажа и изготовления ферм из различных труб требует значительных навыков как в проектировке, так и в самом процессе производства.

Сварные фермы. Назначение, нагрузки, классификация

Решетчатые конструкции, работающие на изгиб, называются фермами. Фермы состоят из отдельных стержней, соединяющихся в узлах и образующих геометрически неизменяемую систему. Если ферма в целом работает на изгиб, то в ее конструктивных элементах возникают только продольные усилия сжатия или растяжения. Это позволяет более рационально использовать материал (металл) по сравнению, например, с балками. Фермы более экономичны по расходу металла, однако более трудоемки в изготовлении. Поэтому их применяют для перекрытия больших пролетов при относительно небольших нагрузках.

Ферма включает в себя три основных конструктивных элемента - верхний и нижний пояса и решетку, состоящую, как правило, из раскосов и стоек. Расстояние между узлами решетки фермы называется панелью, а расстояние между ее опорами - пролетом.

Фермы классифицируют по различным признакам: по назначению - фермы мостов, покрытий (стропильные и подстропильные), транспортных эстакад, гидротехнических затворов, грузоподъемных кранов и т.д.; по профилю очертания поясов - фермы с параллельными поясами, полигональные, арочные и треугольные. Очертание поясов фермы определяется назначением фермы и принятой конструктивной схемой всего сооружения.

Чаще всего в фермах применяют наиболее простую в исполнении треугольную решетку. Дополнительные стойки ставят тогда, когда в месте их расположения прикладываются сосредоточенные силы или возникает необходимость в уменьшении длины панели верхнего, сжатого пояса.

В раскосной решетке все раскосы имеют усилие одного знака, а все стойки - противоположного. При восходящем направлении раскосов стойки растянуты, а при нисходящем-сжаты.

В зависимости от усилий в элементах фермы их разделяют на легкие (пролетом до 50 м с наибольшим усилием в поясах N maх =5000кН) и тяжелые. По конструктивному решению - на обычные, комбинированные и с предварительным напряжением.

Чаще всего используют в сечениях элементов фермы спаренные уголки. Комбинируя сечения из равнобоких и неравнобоких уголков, соединяя их малыми и большими полками, можно получить сечение, равноустойчивое в обеих плоскостях, которое хорошо работает на продольную силу.

В узлах фермы стержни соединяются при помощи листовых фасонок

Трубчатое сечение элементов ферм весьма рациональное по расходу металла, имеет высокую коррозионную стойкость. Однако трудоемкость изготовления таких узлов выше из-за сложности примыкания отдельных элементов друг к другу я применение их ограничено.

Сварные фермы. Методы определения расчетных усилий в стержнях

Стропильные фермы рассчитываются на следующие виды нагрузок:

1. Постоянные нагрузки от веса кровли и собственного веса несущих конструкций покрытия.

2. Временные нагрузки от снега, ветра и т. д.

3. Прочие нагрузки, которые могут восприниматься фермами (от подъемно-транспортного оборудования и др.).

1. Постоянные нагрузки от веса кровли и собственного веса конструкций стропильных ферм, связей по покрытию принимаются равномерно распределенными. Ферма воспринимает большие сосредоточенные нагрузки (свыше 30-50 кН), то они учитываются по фактическому расположению.

Для определения постоянной нагрузки на 1 м 2 покрытия используют формулу

где q ф - фактический вес кровельной конструкции на 1 м 2 ; a - угол наклона кровли к горизонту.

Если уклон кровли не превышает 1/8, принимают cos a = 1.

Расчетную погонную нагрузку на ферму определяют по формуле

где В - шаг стропильных ферм.

Узловые силы на ферму определяются умножением (нагрузки на длину панели верхнего пояса d

Нагрузки от снега (нормативная на 1 м 2 площади) регламентируются СНиП 2.01.07-85 «Нагрузки и воздействия» и рассчитываются по формуле

где Р 0 -вес снегового покрова на 1 м 2 ; c - коэффициент, зависящий от конфигурации кровли.

Расчетная нагрузка на 1 м 2 кровли определяется по нормативной нагрузке с учетом коэффициента перегрузки n, принимаемого равным 1,4...1,6 в зависимости от отношения нормативного веса покрытия к нормативному весу снегового покрова.

Расчетную погонную нагрузку от снега на ферму находят, умножая нагрузку 1 м 2 кровли на шаг ферм В:

При угле наклона кровли a£25° коэффициент с =1 и приa³60° с =0. Промежуточные значения коэффициентов с определяются линейной интерполяцией.

В случае двускатного покрытия с углом наклона 20 0 …30 0 включительно учитывают второй вариант нагружения снегом: равномерно распределенная нагрузка с коэффициентом с =0,75, с одной стороны, и равномерно распределенная нагрузка с коэффициентом с =1,25, с другой.

При более сложных конфигурациях покрытия с перепадами пролетов по высоте снег сдувается на нижележащие фермы с высоких пролетов и образуется зона повышенных нагрузок (снеговые мешки). Определяют эти нагрузки по СНиП 2.01.07-85.

Расчетные узловые силы на ферму от веса снега определяют умножением расчетной погонной нагрузки на длину панели верхнего пояса d.

2. Определение усилий в стержнях фермы. Определение усилий в стержнях производится графическим или аналитическим способом. Для ферм с наклонными поясами используют графический способ при помощи диаграммы усилий Кремоны. Для этого определяют опорные реакции фермы, обозначают (цифрами и буквами) поля между силами и стержнями, строят диаграмму усилий. Расчет узлов выполняют таким образом, чтобы в каждом последующем узле было не более двух неизвестных усилий.

В некоторых случаях не все силы совпадают с узлами ферм (например, для покрытий из плит или панелей шириной 1,5 м в фермах с размером панели d=3 м). Здесь продольные усилия в элементах фермы определяют от всей нагрузки, собранной в сосредоточенные силы по узлам фермы. Сила Р m , действующая между узлами, создает в стержне дополнительный местный изгибающий момент М m по аналогии с балкой. В результате такой элемент будет работать на внецентренное сжатие от продольной силы и местного изгибающего момента. Это учитывается при подборе сечения такого элемента.

Учитывая, что пояс неразрезной, местные изгибающие моменты, определенные как для свободно опертых балок, могут быть уменьшены на 10 % для всех панелей, кроме опорной. В конкретных случаях необходимо учитывать, что местный изгиб значительно утяжеляет ферму по сравнению со шпренгельной фермой.

3. Расчетные длины стержней ферм. Стержни фермы воспринимают продольные усилия сжатия или растяжения. Несущая способность сжатого стержня зависит от его расчетной длины и определяется потерей устойчивости.

где m - коэффициент, зависящий от способа закрепления концов стержня; l - геометрическая длина стержня (расстояние между центрами узлов).

Устойчивость стержней проверяют в двух направлениях - в плоскости фермы и из плоскости фермы, так как заранее нельзя определить, в каком из этих возможных направлений будет происходить потеря устойчивости фермы.

Несущая способность растянутых стержней не зависит от длины. Однако тонкие и длинные растянутые стержни могут провисать под влиянием собственной массы и колебаться под воздействием внешних нагрузок. В связи с этим гибкость растянутых элементов фермы ограничена нормами, и поэтому для ее определения также необходимо знать расчетные длины растянутых стержней как в плоскости, так и из плоскости фермы.

Расчетную длину всех стержней фермы принимают равной расстоянию между центрами узлов за исключением промежуточных раскосов и стоек, примыкающих к растянутому поясу. Растягивающее усилие в нижнем поясе препятствует повороту нижнего узла, поэтому стержни решетки имеют схему с шарнирным опиранием вверху и частичным защемлением внизу и их расчетная длина равна 0,8 геометрической длины, т. е. расстояния между центрами узлов. К опорному раскосу растянутый нижний пояс подходит только с одной стороны, что не обеспечивает защемления. Поэтому его расчетная длина принимается равной геометрической длине.

Устойчивость фермы из плоскости обеспечивают элементы покрытия и связи по верхним и нижним поясам. По верхним поясам укладываются прогоны или плиты покрытия. В коньке фермы обычно устанавливают связевую распорку, обеспечивающую устойчивость ферм в процессе монтажа, а также служащую опорой фермы из плоскости при наличии фонаря.

Нижний пояс фермы закрепляется системой связей по нижним поясам. За расчетную длину поясов ферм принимают расстояние между точками, закрепленными от смещения из плоскости фермы связями, плитами или прогонами с коэффициентом m-1.

У раскосов и стоек фермы в направлении из плоскости расчетная длина равна расстоянию между центрами узлов, так как небольшая жесткость поясов на кручение и гибкость узловых фасонок приближают работу этих стержней к схеме с шарнирным опиранием концов.

Подбор сечений стержней ферм

Наиболее распространенное сечение поясов стропильных и подстропильных ферм - тавровое, образованное парой уголков. Уголковый профиль позволяет легко комбинировать типы уголков (равнополочные или неравнополочные) и соединять их в сечении (полками в сторону).

Это позволяет конструировать стержни с различными радиусами инерции гх и rу и, следовательно, при различной расчетной длине l x и l y в плоскости и из плоскости фермы отдельных ее элементов подобрать наиболее экономичные, равноустойчивые сечения (с одинаковой гибкостью lxи lу) в обоих направлениях.

В таблице приведены различные сечения из уголков и даны соотношения их радиусов инерции.

Верхние пояса ферм из плоскости раскрепляют прогонами или плитами покрытия в каждом узле, и тогда расчетные длины будутl x=l y; или через узел, и тогда соотношение расчетных длин станет l y=2l x. В первом случае наиболее экономичным было бы сечение пояса из двух неравнополочных уголков, поставленных малыми полками в сторону (rx»ry). Однако такое сечение применяется редко, так как вследствие небольшой ширины пояса фермы оно неудобно при транспортировании и монтаже. По этим соображениям при l x=l yчаще применяют сечение верхнего пояса из двух равнополочных уголков. При расчетной длине пояса из плоскости фермы вдвое большей, чем в плоскости фермы (l y=2l x), наиболее рационально сечение из неравнополочных уголков, поставленных большими полками в сторону (rу»2rx).

Нижние пояса ферм обычно работают на растяжение, поэтому соотношение радиусов инерции сечений не влияет на их несущую способность. Однако для обеспечения требований по предельной гибкости, а также из условий транспортировки и монтажа более рационально широкое сечение из неравнополочных уголков, поставленных большими полками в сторону.

Опорные раскосы имеют одинаковую расчетную длину в плоскости и из плоскости фермы (l x=l y). Поэтому наиболее рациональное для них сечение из неравнополочных уголков, поставленных малыми полками в сторону (rx=ry).

Промежуточные раскосы и стойки при сжимающих усилиях проектируют из равнополочных уголков (rx»0,8ry). Растянутые элементы решетки могут приниматься и из неравнополочных уголков, если можно подобрать их сечение с меньшей площадью.

Стойки ферм с примыкающими связевыми элементами обычно проектируют крестового сечения. В этом случае их гибкость определяется наибольшей расчетной длиной (l y из плоскости фермы) и минимальным радиусом инерции.

Диаметр труб поясов рекомендуется принимать не более чем в три раза большим диаметра труб решетки. Толщина стенки труб поясов и опорных раскосов желательно не менее 3 мм, отношение толщины стенки к диаметру трубы 1/55…1/45. Для промежуточных раскосов и стоек толщину стенок труб можно брать до 2 мм с отношением ее к диаметру трубы до 1/80.

Сечения сжатых стержней обычно подбирают, начиная с элементов, воспринимающих большие усилия. Требуемая площадь двух уголков

где N- расчетное усилие в стержне; j - коэффициент продольного изгиба, равный: для поясов 0,7...0,9, для элементов решетки 0,6...0,8; R - расчетное сопротивление стали

По сортаменту подбирают близкие по требуемой площади сечения уголки, исходя из их геометрических характеристик составляют сечение из двух уголков и определяют гибкости стержня в обоих направлениях (в плоскости и из плоскости фермы) по формулам:

где l x и l y- расчетные длины стержня в плоскости и из плоскостная фермы.

Для сжатых стержней следует выбирать по сортаменту уголки с наиболее тонкими полками, так как они обладают большей жестокостью и несущей способностью (даже по сравнению с сечениями, имеющими большую площадь, но более толстостенными). Наибольшая гибкость стержней нормирована и зависит от вида элемента фермы и ее материала. Поэтому, определив гибкости стержней, их следует сравнить с предельными.

После определения предельной гибкости проверяют напряжения в принятом сечении

где jmin - коэффициент продольного изгиба, принимаемый по большей из гибкостей lx или lх; Fбр - площадь сечения выбранных уголков.

Если напряжение окажется больше расчетного сопротивления или значительно меньше его, то берут другой набор уголков и вновь проверяют их расчетом.

Усилия в панелях верхнего пояса фермы имеют различные значения и теоретически надо бы подбирать разные сечения. Однако ферма в этом случае будет очень нетехнологичной в изготовлении, так как будет иметь большое количество стыков. На практике для ферм пролетом 24 м применяют одно сечение на всей длине пояса, а для ферм большего пролета делают пояс из двух сечений.

В процессе погрузки, перевозки, монтажа длинные гибкие элементы могут быть деформированы, поэтому напряжения в раскосах и стойках ферм (исключая опорный раскос) проверяют введением коэффициента условий работы т, учитывающего эти факторы:

где s = 0,8 - для элементов решетки при гибкости более 60 (по этим же соображениям для любых сечений стержней ферм не используют уголки менее 50x4 мм).

В фермах из труб в зоне примыкания раскосов и стоек к поясам напряжения распределяются по сечению трубы неравномерно, поэтому элементы решеток, работающие на сжатие при гибкости l<60, проверяют на прочность без учета коэффициента j, с коэффициентом условий работы m=0,8.

Сечение растянутых стержней подбирают, начиная с элементов, воспринимающих наибольшие усилия.

Площадь сечения определяется по формуле

По сортаменту выбирают ближайшие по площади уголки, выписывают геометрические характеристики сечения, составленного из двух уголков, и определяют гибкости стержня в плоскости и из плоскости фермы. Наибольшая гибкость растянутых стержней также нормирована и зависит от вида элемента фермы, условий ее работы и материала конструкции

Если гибкость подобранного элемента не превосходит предельной, то проверяют фактические напряжения в стержне по формуле

В фермах из труб по тем же причинам, что и в сжатых элементах, при проверке прочности вводится коэффициент условий работы m=0,8.

С целью экономии материала для нижних поясов ферм иногда применяют комбинацию из двух сечений со стыком в узлах.

По мере приближения к середине фермы усилия в раскосах уменьшаются. Таким образом, фактором, определяющим сечение средних раскосов, является предельная гибкость. Если средние раскосы имеют небольшое усилие растяжения (до 100 кН), то при случайной односторонней нагрузке (например, при монтаже плит на прогоне, очистке снега и др.) усилие может уменьшиться и перейти в сжатие. С учетом этого в средних слабо растянутых раскосах гибкость должна быть не более 150 и подбирают ее по предельной гибкости для сжатых стержней.

Если пояс состоит из различных сечений, смещение центров тяжести уголков (эксцентриситет осей) не должно превышать 5 % высоты пояса. В противном случае в узле возникают значительные изгибающие моменты, которые необходимо учитывать расчетом.

Определяя радиус инерции суммарного сечения из двух уголков, необходимо учитывать расстояние в свету между параллельными полками, которое определяется толщиной фасонок фермы. Толщина фасонок зависит откусили и в стержнях фермы и может быть принята по таблице

Фасонки обычно принимаются одной толщины. Однако для ферм с большими пролетами допускается делать опорные фасонки на 2 мм толще, чем промежуточные. Для подбора сечения стержней ферм удобно пользоваться табличной формой без промежуточных вычислений. Такие таблицы дают возможность выполнить расчеты в компактной форме и контролировать все факторы. После расчета всех сечений стержней фермы необходимо определить общее число используемых на ферму профилей. Если в ферме пролетом до 24 м окажется больше 5...6 профилей, а в ферме пролетом.

Основные принципы конструирования сварных ферм

При конструировании фермы решается несколько задач.

В первую очередь определяется геометрическая схема и центрация узлов.

Схему фермы строят таким образом, чтобы центры тяжести сечения совпадали с осевыми линиями. В фермах со стержнями из парных уголков привязка обушков к осевым линиям берется по таблицам сортамента уголков и округляется до 5 мм. В некоторых случаях вначале задаются габариты фермы - высота стропильных ферм по граням поясных уголков h. Здесь геометрическая высота формы на опоре h on будет зависеть от привязки к осям поясных уголков z 1 и z 2 , уклона верхнего пояса i и расстояния разбивочной оси до грани фермы a:

При последующей разработке рабочих чертежей (КМД) длины стержней фермы в геометрической схеме определяются с точностью до 1 мм.

После определения геометрической схемы определяется конструкция промежуточных узлов. Последовательность компоновки таких узлов следующая. Сначала к намеченным осевым линиям привязываются поясные уголки, что позволяет определить положение торцов стержней решетки к узлам. С целью уменьшения сварочных напряжений в узлах, и как следствие, трещин, торцы стержней решетки не доводят до поясов на 40…50 мм. Затем рассчитывают длину швов, прикрепляющих стержни в узле. По длине сварных швов определяют размеры фасонки. Стержни решетки приваривают к фасонкам фланговыми швами. Продольная сила N воспринимается швами пера и обушка, длина которых обратно пропорциональна расстоянию от центра тяжести уголка до его краев. Длина шва на обушке определяется по формуле

где z- расстояние от центра тяжести уголка до его обушка; b - ширина полки уголка.

Принимая во внимание наличие радиуса закругления у пера, наибольшая толщина шва принимается: для уголков толщиной до 6 мм hш=4 мм; для уголков толщиной 7…16 мм hш=d-2 мм и для уголков толщиной более 16 мм hш=d-4 мм. Со стороны обушка наибольшая толщина шва не должна превышать 1,2 d (где d - меньшая из толщин уголка или фасонки). Как правило, стремятся сократить число катетов в пределах одного отправочного элемента до трех-четырех. При расчете размеров фасонок по длине швов учитывают непровар в конце швов на длине примерно 1 см.

Швы, соединяющие узловые фасонки, раскосы и стойки рассчитывают на усилия в последних. Швы, прикрепляющие фасонки к поясам с постоянным сечением, рассчитывают на разность усилий в смежных панелях пояса, например N 2 -N 1 . Часто по расчету эти швы получаются небольшой длины. Их принимают сплошными по всей длине фасонки и минимального катета.

В узлах, где к поясу подходят только стойки, разность усилий равна нулю. В этих случаях крепление стойки к фасонкам и фасонок к поясу рассчитывается на усилие в стойке Ncт.

Следует отметить, что использование листовых усиливающих накладок более предпочтительно, так как уголковыми накладками можно перекрывать поясные уголки только с одинаковыми толщинами полок. Узел с прерванными поясами работает в сложных условиях и расчет его в достаточной степени условен.

На практике обычно между соединяемыми поясами оставляют зазор 40...50 мм, а уголок с усилием заводят на 300...500 мм за центр узла. Толщина накладки принимается не менее толщины фасонки, а ее площадь должна быть не менее площади выступающего пера меньшего пояса, т. е. такой, чтобы была обеспечена прочность ослабленного сечения.

Его прочность определяется по формуле

где Np - расчетное усилие в элементе, принимаемое на 20% больше действительного, т. е. Nр - 1/2N l (поправка на особенности работы узла); M=Nрe - изгибающий момент (е - эксцентриситет силы N l , относительно центра тяжести тавра); Fт и Wт - площадь и момент сопротивления тавра.

В некоторых случаях пользуются упрощенным приемом проверки таких сечений по формуле

Расчет швов, соединяющих листовую накладку и пояса, производят на усилие в накладке

где d - напряжение в накладке, определенное по формуле (8.55).

Швы, соединяющие уголки пояса и фасонки, рассчитывают на усилия (расчетные) в поясах без учета усилия, передаваемого с уголка на уголок накладкой, соответственно: 1,2 N 1 - 2 Nh и 1,2 N 2 -2N, однако не меньше, чем 1,2 N 1 / 2 и 1,2 N 2 /2.

Как правило, узловые фасонки на 15...20 мм выпускают за обушки уголков для размещения угловых швов. Конфигурация узловых фасонок должна быть простой, с минимальным числом резов, чтобы при раскрое листа отходы металла были небольшими.

Опорные узлы конструктивно могут решаться по-разному, в зависимости от условий опирания. Довольно часто применяют опирание стропильной фермы сбоку колонны на опорный столик. Такое соединение отличается простотой в изготовлении и монтаже, допускает как шарнирное, так и жесткое опирание фермы, надежной в работе.

Большепролетные фермы из соображений транспортирования по железной дороге изготавливаются, как правило, из двух полуферм (возможно и большее число отправочных марок). На монтажной площадке эти полуфермы укрупняют. Укрупнительные (монтажные) узлы должны быть просты и надежны в работе. Центральные фермы должны обеспечивать полную идентичность правого и левого отправочных элементов полуферм. Из этих же соображений, стремятся иметь одни и те же отправочные марки для фонарных, фесфонарных, торцовыми и других сходных между собой ферм.

Смежные отправочные марки ферм на монтажной площадке соединяются между собой по поясам с помощью уголковых или листовых накладок, которые вначале фиксируют с помощью болтов. На рис. показан пример укрупнительного узла, в котором верхние и нижние пояса перекрыты уголковыми накладками. В уголковой накладке вертикальное перо уголка подрезают на 15...20 мм, а также срезают обушок для обеспечения плотного прилегания одного уголка к другому. По верхнему поясу уголок накладки принимают обычно такой же, что и уголок пояса. Частичное уменьшение площади сечения в месте стыка компенсируется тем, что здесь отсутствует коэффициент продольного изгиба j, т. е. площадь стыковых уголков подбирается из условий прочности.

Нижний пояс воспринимает растягивающие нагрузки, поэтому площадь сечения в месте стыка с учетом срезки не должна быть меньшей величины. Задача решается использованием уголков того же размера, что и поясные, но большей толщины.

Сварные швы, соединяющие уголковые накладки, рассчитываются на усилие в поясах Nn с равномерным распределением, так как сварные швы расположены по перьям уголков. К накладке верхнего пояса приварены листовые детали, соединяющие фасонки полуферм. К этим же деталям крепятся связевые распорки по коньку.

Уголковые накладки имеют существенный недостаток, заключающийся в том, что в случае наличия перегиба пояса необходимо гнуть уголок, что можно сделать только в горячем состоянии, а это сложно обеспечить в условиях монтажной площадки.

Более технологичны в изготовлении укрупнительные стыки с листовыми накладками. По аналогии с промежуточными узлами, выполненными на листовых накладках, пояса в месте стыка рассчитываются на силу 1,2 Nn (Nn- усилие в поясе).

Листовые накладки монтажного стыка могут крепиться на высокопрочных болтах. Стык верхнего пояса решается аналогичным образом.

В некоторых случаях нижние пояса ферм стыкуют с размещением стыковых уголков (поясных) вразбежку (один из уголков не доводится до оси стыка, а другой, напротив, заводится за него). Преимущество такого решения заключается в том, что в ослабленном сечении прерывается только один поясной уголок. Места стыка поясных уголков перекрываются уголковой накладкой и фасонкой.

Для обеспечения работы элементов ферм из парных уголков как единого стержня применяют соединительные прокладки. Прокладки располагаются вдоль сжатых стержней на расстоянии l £40r, вдоль растянутых стержней l 1 £80 г (где r-радиус инерции уголка относительно оси, параллельной плоскости расположения прокладок). Между узлами в сжатых элементах должно быть не менее двух прокладок.

Если не ставить соединительные прокладки, то под воздействием сжимающей силы каждый уголок будет работать раздельно. Несущая способность двух отдельных уголков меньше, чем соединенных прокладками.

Торцовый лист принимаем толщиной 20 мм и шириной 180 мм (из условия размещения болтов)/

Напряжения смятия у торца:

Толщина швов крепления опорного раскоса назначается: на обушке 10 мм, на пере - 6 мм (из-за скручивания пера). Их длины - с учетом табл.

Аналогично для швов нижнего пояса при толщине их у обушка О мм и у пера - 4 мм:

Пo требуемым расчетным длинам швов с учетом конструктивных требований (добавка 1 см длины шва на непровар и зазоры между швами) намечаем графически (по масштабу) конфигурацию и размеры опорной фасонки. Проверяем опорную фасонку на срез, а также швы ее крепления к торцовому листу (толщину швов назначаем 6 мм):


Расчетное усилие для крепления уголков пояса к вертикальной фасонке:

Требуемая длина этих швов у обушка (h ш -10 мм) и пера (h ш =6 мм):

На усилие N р =755 кН рассчитываем швы вертикальных листовых накладок, перекрывающих фасонки смежных ферм. Требуемая длина одного вертикального шва при толщине шва h ш =12 мм:

Толщину накладок принимаем 6=12 мм.

Длину швов, прикрепляющих раскосы и стойку, определяем по формулам, аналогичным прикреплению уголков к вертикальным фасонкам.

Узел V рассчитывается аналогично узлу IV .

Решетчатые строительные металлоконструкции различного назначения

Пролетные сооружения

К этой категории обычно относят здания общественного назначения - концертные и спортивные залы, выставочные павильоны, вокзалы, рынки и т. п., а также здания специального назначения – ангары. В большепролетных конструкциях существенную долю в расчетной нагрузке составляет собственный вес, поэтому для их сооружения особенно эффективно применение сталей повышенной пространственной системы в виде сводов, складок и куполов. Выбор того или иного решения большепролетного покрытия осуществляют при проектировании сооружения, исходя из конкретных условий.

Очертание поясов и систем решеток в большепролетных фермах может быть самым различным. Фермы с параллельными поясами проектируются обычно с треугольной или раскосной решеткой. Их высоту принимают обычно равной 1/8…1/15 пролета. Трапецеидальные фермы делают с уклоном кровли i = 1/10/…1/15 и высотой посередине 1/7…1/11 пролета. Сегментные фермы имеют небольшие усилия в раскосах, поэтому здесь целесообразна разреженная или крестовая решетка. Высоту их назначают равной 1/8…1/12 пролета. Высота многопролетных нераз+резных или консольных ферм может быть уменьшена на 25...30 % по сравнению с разрезными. Ecли усилия в стержнях большепролетных ферм превышают 4000...5000 кН, ceчeния таких ферм принимаются составными из сварных двутавров или прокатных профилей. Большие усилия в стержнях легче передаются в узлах через две фасонки.

По причине большой высоты ферм их нельзя перевозить по железной дороге в виде собранных отправочных марок. Такие конструкции укрупняются на монтаже. На монтажной площадке элементы соединяют сваркой или высокопрочными болтами.

Опорные реакции в фермах значительны, поэтому передача их должна осуществляться строго по оси узла фермы. Четкая передача опорной реакции может быть достигнута за счет применения тангенциальной или специальной балансирной опоры (см. рис).

Рис. Специальные опоры большепролетных ферм

а - тангенциальная; б - балансирная; в - катковая

Катки балансирных опор в цилиндрических шарнирах (цапфах) при центральном угле касания поверхностей ³p/2 рассчитывают на местное смятие по формуле

где А-давление на опору; r-радиус катка; l - длина катка; Rсм.м - расчетное сопротивление местному смятию при плотном касании

катки, находящиеся между двумя параллельными плоскостями, рассчитывают на диаметральное сжатие по формуле

где n –число катков; d – диаметр катка; Rс.к. – расчетное сопротивление диаметральному сжатию катков при свободном касании.

Для изготовления катковых опор используют сталь 35Л, а катки вытачивают из стали марки 5.

Различают два вида компоновки рамных покрытий: поперечную, с размещением рам поперек здания с определенным шагом и продольную, чаще всего применяемую для ангаров. В случае продольной компоновки основную несущую раму ставят вдоль большего размера плана здания (здесь устраивают раздвижные ворота) и на нее опираются поперечные фермы.В ангарных конструкциях применяют фермы с консолями, выходящими за несущую раму, что значительно облегчает поперечные фермы, но несколько утяжеляет раму. Устойчивость несущих рам и поперечных ферм обеспечивается крестовыми связями.

Фермы, предварительно напряженные затяжками

Предварительное напряжение можно успешно применять в решетчатых конструкциях разного назначения.

Наиболее разработаны предварительно напряженные фермы покрытия зданий, в которых предварительное напряжение осуществляется с помощью высокопрочных материалов. Возможности варьирования конструктивных схем в фермах значительно шире, чем в балках, и поэтому эффект применения предварительного напряжения здесь в значительной мере зависит от рационально выбранной для конкретного случая схемы фермы и затяжки, а также последовательности предварительного напряжения.

По характеру размещения затяжек и их влиянию на работу конструкции предварительно напряженные фермы можно разделить на два основных типа: фермы, у которых затяжки размещены в пределах наиболее нагруженных стержней и вызывают предварительное напряжение только в этих стержнях; фермы, у которых затяжки размещены в пределах всего пролета или части его и вызывают предварительное напряжение в нескольких или во всех стержнях фермы.

Ферма второго типа более разнообразна по конструктивным схемам и, как правило, более эффективна.

Ферма второго типа получается при устройстве одного или нескольких затяжек вдоль нижнего (растянутого) пояса. Одна затяжка создает предварительное напряжение в нескольких панелях пояса, вдоль которых она размещена, но другие стержни предварительного напряжения не получают.

При равномерном предварительном напряжении всего нижнего пояса одной затяжкой предварительное напряжение лимитируется несущей способностью на сжатие наиболее гибкой панели.

Натяжение затяжек целесообразно производить на заводе или на укрупнительной сборке. Чтобы обеспечить устойчивость пояса в процессе натяжения, затяжки по их длине соединяют с поясом диафрагмами через 40-50 наименьших радиусов инерции сечения пояса. Число ветвей в затяжке определяется формой сечения пояса и способом предварительного напряжения.

Оптимальная высота ферм посередине пролета от затяжки до верхнего пояса составляет 1/6-1/8 пролета, а высота жесткой части фермы принимается в пределах 1/10-1/12.

Эффективность предварительного напряжения ферм в значительной степени зависит от последовательности натяжения затяжки и загружения фермы. Натяжение затяжки в проектном положении конструкции после передачи на ферму части или всей постоянной нагрузки, как правило, дает больший эффект, чем натяжение до загружения ферм.

При закреплении затяжки, создающей общее предварительное напряжение в стержнях фермы, усилие в затяжке получается обычно значительным и поэтому надо при конструировании укреплять узел дополнительными ребрами жесткости.


Заключение

Я разрабатывал дипломный проект «Технология изготовления строительной фермы из прямоугольных труб».

Мне понравилась работа над дипломным проектом, так как она требовала самостоятельной работы.

Часть знаний я применил в дипломном проекте, а остальную информацию получил в библиотеке.

Дипломная работа требовала знаний по черчению, технологии, электросварке и другим специальным дисциплинам.

Во время дипломной работы я почувствовал себя конструктором сварочного производства и, конечно же, ответственным лицом над своей конструкцией.

4. Внецентренно растянутые элементы . Подбор сечения внецентренно растянутых элементов ферм можно проводить как центрально-растянутых стержней. Прочность подобранного сечения проверяют по формуле

≤ R γ

A nW n

5. Подбор сечений элементов ферм по предельной гибкости. Ряд стержней легких ферм имеют незначительные усилия и, следовательно, небольшие напряжения. Сечения этих стержней подбирают по предельной гибкости. Зная

расчетную длину l efx и

l efу и значение предельной гибкости [λ]

(см. табл. 6),

l efx

l efy

определяют требуемые

радиусы инерции i х

и i у

[л ]

[л ]

сортаменту подбирают сечение, имеющее наименьшую площадь.

Особенности конструирования ферм из круглых труб . Конструирование фермы следует начинать с вычерчивания осевых линий элементов, сходящихся в узлах. Стержни центрируют по геометрическим осям труб. При наличии расцентровки стержней в узлах необходимо при расчете фермы учитывать дополнительные узловые моменты. При неполном использовании несущей способности поясной трубы допускается эксцентриситет не более 1/4 диаметра поясной трубы.

При бесфасоночных соединениях в узлах тонкостенность поясов из условия местной устойчивости рекомендуется принимать не более значений, приведенных в табл. 7, тонкостенность примыкающих элементов – по возможности максимальной, но также не более значений, приведенных в табл. 7.

Таблица 7

Тонкостенность элементов ферм из круглых труб

Тонкостенность

текучести стали

поясов δ = D /t

примыкающих элементов δd =d /t d

R yn , кН/см

растянутых

Св. 30 до 40

П р и м е ч а н и е: 1) указанные в табл. 7 значения δ для поясов являются ориентировочными и не исключают необходимости проверки прочности узлов;

2) для сжатых примыкающих элементов при указанных в табл. 7 значениях δd не требуется проверка их стенок на местную устойчивость.

РАСЧЕТ И КОНСТРУИРОВАНИЕ УЗЛОВ ФЕРМЫ

Соединение трубчатых стержней в узлах фермы должно обеспечивать прочность узла и герметичность торцов труб, чтобы предотвратить возникновение коррозии с внутренней стороны полых элементов.

В трубчатых фермах наиболее рациональны бесфасоночные узлы с непосредственным примыканием стержней решетки к поясам. При выполнении фигурной резки концов специальными машинами такие узлы дают высококачественное соединение с минимальной затратой труда и материала. Если нет станков для фигурной обработки торцов труб, узлы трубчатых ферм выполняют со сплющиванием концов стержней решетки, а в исключительных случаях – на фасонках или с помощью цилиндрических и полукруглых вставок . Сплющивание концов допустимо лишь для труб из малоуглеродистой или другой пластичной стали.

Характерные решения конструкции узлов стропильных ферм из круглых труб приведены на рис. 5.

В типовой серии в фермах из круглых труб принимают бесфасоночные узлы сопряжения элементов решетки с поясами. Примыкание раскосов к поясам рекомендуется выполнять с разделкой кромок, а сварку в узловых соединениях труб производить с проплавлением стенки примыкающей трубы на всю ее толщину. Заводские сварные соединения элементов ферм рекомендуется выполнять полуавтоматической сваркой, на монтаже допускается применение ручной сварки. Материалы для сварки выбирают согласно .

В курсовом проекте необходимо рассчитать все узлы для отправочного элемента фермы, включая опорные узлы и монтажные стыки отправочных элементов ферм. Расчет следует выполнить с вычерчиванием узлов в пояснительной записке.

Расчет узлового сопряжения с непосредственным примыканием стержней решетки к поясам (см. рис. 5, а) является теоретически сложной задачей, относящейся к области расчета пересекающихся цилиндрических оболочек. Напряжения по длине сварного шва, соединяющего трубу решетки с поясом, распределяются неравномерно и зависят от отношения диаметров соединяемых труб, толщины стенки и прочностных характеристик материала поясной трубы, угла сопряжения труб и т.п. Так как центр тяжести сварного шва обычно не совпадает с осью приложения усилия, то рекомендуется проверять раздельно несущую способность участков шва, лежащих по разные стороны от оси, принимая, что на каждый участок передается половина осевого усилия. Форма сварного шва без снятия фаски получается переменной по длине линии соединения труб: при остром угле примыкания шов приближается к угловому, при тупом – к стыковому.

В трубах без разделки кромок участок шва у тупого угла можно рассматривать как стыковой, остальные – как угловые. В этом случае прочность шва, прикрепляющего трубчатый стержень решетки, можно проверить в запас

несущей способности по формуле (расчет по металлу шва):

Значения коэффициента ξ зависят от соотношения диаметров труб:

d / D

Аналогичный расчет выполняют по металлу границы сплавления (βz ,R wz , γwz ). При непосредственном примыкании стержней решетки к поясам с обработкой кромок (со снятием фаски с переменным углом наклона) соединительные швы на большей части длины можно считать стыковыми. Прочность сварного шва в этом случае проверяется по формуле

σ = N А ≤ 0,85R wу γc ,

где А – площадь сечения прикрепляемой трубы;R wу – расчетное сопротивление

сварного шва встык растяжению (R wу = 0,85R у ) или сжатию (R wу =R у ). Коэффициент 0,85 принимают для соединений впритык (тавровых) при

угле раскрытия шва более 30 º без подварки корня сварного шва.

Если в узлах трубчатые стержни решетки пересекаются между собой, растянутый раскос целесообразно приварить к поясу по всему контуру сечения, а сжатый раскос или стойку частично прирезать и приварить к растянутому.

Точнее узловое бесфасоночное прикрепление труб можно рассчитать по методике, предложенной в . Пример расчета по данной методике представлен в прилож. 2.

Прочность стенки трубы пояса в местах примыкания к нему элементов решетки и опирания других элементов необходимо проверить на местный изгиб в соответствии с рекомендациями . При недостаточной толщине пояса его можно усилить накладкой. Накладки вырезают из трубы того же диаметра, что и пояс, или изгибают из листа толщиной не менее одной и не более двух толщин стенки поясной трубы.

Соединять трубы одинакового диаметра рационально встык на остающемся подкладном кольце (рис. 6). Расчет такого соединения на растяжение и сжатие производят по формуле

≤ R wуγ wс,

р D срt

где D ср – средний диаметр трубы с меньшей толщиной стенки;t – меньшая

толщина стенки соединяемых труб; γwс – коэффициент условий работы сварного стыкового соединения: при сварке на подкладном кольце γwс = 1, без него γwс = 0,75.

Стыковое соединение получается равнопрочным с основным металлом при расчетном сопротивлении наплавленного металла не ниже расчетного сопротивления материала труб для сталей, не разупрочняющихся при сварке. При более низком расчетном сопротивлении наплавленного металла стыковое соединение на подкладном кольце можно выполнить косым швом.

Если невозможно обеспечить достаточную точность подгонки труб для сопряжения встык и равнопрочность сварного шва, стыковые соединения труб равных диаметров выполняют с помощью парных кольцевых накладок, гнутых из листа или вырезаемых из трубы того же или несколько большего диаметра. Толщину накладок и сварного шва рекомендуется принимать на 20 % больше толщины стыкуемых труб. Длина сварного шва при накладках с фигурными вырезами приближенно определяется по формуле

lw ≈ 2 n а

где n – число лепестков по периметру трубы;а – размер лепестка (глубина фигурного выреза вдоль оси трубы).

Стыковые соединения труб разных диаметров, работающие на сжатие, а также соединения в местах перелома оси пояса могут выполняться при помощи торцевых прокладок или фланцевых соединений.

В сварных соединениях трубчатых элементов расчетную толщину шва рекомендуется принимать равной меньшей толщине стенки соединяемых труб.

Минимальное значение катета шва k f min определяется по , максимальное значение составляетk f max = 1,2t п , гдеt п – наименьшая толщина стенки соединяемых труб.

Для опирания панелей или прогонов на верхнем поясе фермы предусматриваются специальные столики из круглых труб (рис. 8, 9 прилож. 2).

Опорные узлы ферм . Конструкция опорных узлов ферм зависит от вида опор (металлические или железобетонные колонны, кирпичные стены и т.д.) и способа сопряжения ферм с колоннами (жесткое или шарнирное).

При шарнирном сопряжении наиболее простым является узел опирания фермы на колонну сверху с использованием дополнительной стойки (надколонника) . Опорную стойку в зависимости от величины действующих на нее усилий можно запроектировать из прокатного или сварного двутавра (см. рис. 7, а) или из обрезка трубы (см. рис. 7, б).

В типовых конструкциях нижние пояса ферм соединяют с опорной двутавровой стойкой болтами нормальной точности. Верхние пояса стропильных ферм прикрепляют к фасонке надколонника болтами нормальной точности. Подвижность этого крепления обеспечивается овальны-

ми отверстиями в фасонках опорной стойки.

Опорное давление фермы F R передается с опорного фланца фермы через строганые или фрезерованные поверхности на опорную плиту колонны. Опорный фланец для четкости опирания должен выступать на 10…20 мм ниже фасонки опорного узла. Площадь торца фланца определяют из условия смятия

А тр≥

1,2 F R ,

где R р – расчетное сопротивление стали смятию торцевой поверхности.

При жестком сопряжении стропильная ферма примыкает к колонне сбоку (рис. 11 прилож. 2) и устанавливается на опорный столик, а усилия от опорного момента воспринимаются фланцевым соединением на болтах.

В курсовом проекте для расчета опорных узлов из таблицы основных сочетаний нагрузок для сечения 1–1 выбирают расчетные усилия N 1-1 , М max лев . Момент раскладывают на пару горизонтальных силН =М max лев /h ф оп , которые

воспринимаются узлами крепления нижнего и верхнего поясов фермы. Нижний опорный узел . Опорное давление фермыF R = N 1-1 передается с

опорного фланца фермы через строганые или фрезерованные поверхности на опорный столик. Опорный фланец должен выступать на 10…20 мм ниже фасонки опорного узла. Опорный столик выполняют из листа t = 30…40 мм. Учитывая возможный эксцентриситет передачи нагрузки, возникающий из-за неплотного опирания фланца и его перекоса в своей плоскости, угловые швы крепления столика рассчитывают на усилие 1,2F R . Высоту столика определяют из условия прочности сварного шва на срез

h ст=

1,2F R

1...2 см.

в f

k fR wf

г wfг c

Опорный фланец прикрепляют к полке колонны на болтах грубой или нормальной точности, которые ставят в отверстия на 3…4 мм больше диаметров болтов, чтобы они не могли воспринять опорную реакцию фермы в случае неплотного опирания фланца на опорный столик. Для зданий, возводимых в районах с расчетной температурой наружного воздуха выше

– 40 ºС, следует применять болты классов 4.6, 4.8, 5.6, 5.8, 6.6 и 8.8 по ГОСТ

15589–70*, ГОСТ 15591–70*, ГОСТ 7798–70*, ГОСТ 7796–70*.

В большинстве случаев опорный момент М max лев имеет знак минус, т.е.

направлен против часовой стрелки. В этом случае горизонтальная сила Н прижимает фланец узла нижнего пояса к колонне и болты в узле ставятся конструктивно (обычно 6…8 болтов диаметром 20 или 24 мм). Болты в соединении устанавливаются в соответствии с .

Если в опорном узле возникает положительный момент М max лев и усилиеН

отрывает фланец от колонны, то болты крепления фланца нижнего пояса к колонне работают на растяжение и их прочность следует проверить с учетом внецентренного приложения усилия (см. пример 4 прилож. 2).

Швы крепления нижнего пояса фермы к опорному фланцу работают в сложных условиях, т.к. воспринимают опорную реакцию фермы F R и, как правило, внецентренно приложенную силуН . Под действием опорного давленияF R швы срезаются вдоль шва и в них возникают напряжения

Поскольку центр шва может не совпадать с осью нижнего пояса, то на шов действует момент М =Н ·е , гдее – эксцентриситет приложения усилияН . Под действием момента шов также работает на срез перпендикулярно оси шва и в нем возникают напряжения

τМ =

6 H e

Уl2

Прочность шва крепления фланца к фасонке проверяют в наиболее напряженной точке на действие результирующих напряжений

τ = (фF )2 + (фH + фM )2 ≤ 0,85R wf γwf γс .

Верхний опорный узел . При отрицательном знаке опорного моментаМ max лев

горизонтальная сила Н в узле крепления верхнего пояса стремится оторвать фланец от колонны и вызывает его изгиб. Напряжения во фланце определяют по формуле

где l иt – соответственно длина и толщина фланца.

Желательно верхний опорный узел проектировать так, чтобы сила Н проходила через центр фланца. В этом случае усилие растяжения во всех болтах будет одинаковым и необходимое число болтов можно определить по формуле

n =[ N b Н ] г c ,

где – несущая способность болта на растяжение, =R bt ·A bn ;R bt –

расчетное сопротивление болта растяжению ; A bn – площадь сечения болта нетто .

Шов крепления верхнего пояса к фланцу работает на срез, и его прочность проверяют по формуле

≤ 0,85 R wfγ wfγ с.

в fk fl w

Если горизонтальная сила Н не проходит через центр фланца, то швы и болты рассчитывают с учетом эксцентриситета.

Если в опорном узле возникает положительный момент М max лев , то силаН в

узле крепления верхнего пояса прижимает фланец к колонне и болты в узле ставятся конструктивно (обычно 4…6 болтов).

При обеспечении податливости верхнего опорного узла шарнирное сопряжение фермы с колонной может быть выполнено и при опирании сбоку

Укрупнительные стыки ферм. Решение укрупнительных узлов ферм при их поставке из отдельных отправочных элементов показано на рис. 10, а также в . Приведенные решения обеспечивают сборку конструкции из двух симметричных взаимозаменяемых полуферм.

Укрупнительные соединения ферм из круглых труб в коньковом узле рекомендуется проектировать фланцевыми с использованием центрирующей прокладки. Монтажные стыки работающих на растяжение нижних поясов ферм проектируются фланцевыми на высокопрочных болтах, монтажные стыки сжатых верхних поясов – на обычных болтах. Высокопрочные болты для монтажных стыков нижних поясов принимаются по ГОСТ 22353-77*, ГОСТ

22356–77* из стали 40Х «селект».

Пример расчета укрупнительных узлов верхнего и нижнего поясов приведен в прилож. 2.

РАЗРАБОТКА РАБОЧИХ ЧЕРТЕЖЕЙ

Рабочие чертежи рассчитанной фермы выполняются на стадии КМД (конструкции металлические). В курсовом проекте графическая часть выполняется на листе формата А1 (лист № 2 проекта) и содержит:

1. Расчетно-геометрическую схему фермы, на которой указываются привязка к осям здания, размеры элементов фермы и расчетные усилия (в кН) в стержнях отправочного элемента. Рекомендуемый масштаб 1:100.

2. Изображение отправочного элемента фермы (левого), вид сверху и снизу, сечения. Рекомендуемые масштабы: схема осевых линий – масштабы 1:20, 1:25, 1:30, 1:50, поперечные размеры элементов – масштабы 1:10, 1:15.

3.Узлы и сопряжения: монтажные узлы для верхнего и нижнего поясов в сборе, узлы опирания фермы на колонну (в курсовом проекте опорные узлы можно привести на листе № 1). Рекомендуемые масштабы 1:10, 1:15.

4. Спецификацию на отправочный элемент фермы.

5. Примечания к чертежу, включающие указания о способах сварки, сварочных материалах, преобладающих и не проставленных на чертеже размерах сварных швов, болтов, отверстий и т.д.

ТРЕБОВАНИЯ К ИЗГОТОВЛЕНИЮ И МОНТАЖУ СТРОПИЛЬНЫХ ФЕРМ

Изготовление и монтаж стропильных ферм покрытия должны производиться в соответствии с требованиями СНиП III–18–75 «Металлические конструкции. Правила производства и приемки работ», СНиП 3.03.03–87 «Несущие и ограждающие конструкции».

При проектировании и изготовлении стропильных ферм из труб особое внимание следует уделять выбору стали для изготовления фланцев. Эта сталь должна поставляться в термически обработанном состоянии (нормализация или закалка с отпуском) и подвергаться на заводе – изготовителе металлоконструкций испытанию на статическое растяжение на образцах, вырезанных из листов в направлении поперек проката. Материал фланцев или готовые фланцы (до приварки к поясам ферм или после приварки) должны подвергаться ультразвуковому дефектоскопическому контролю на наличие внутренних расслоений, грубых шлаковых включений и т.п.

Защиту стальных ферм от коррозии следует производить в соответствии с требованиями СНиП 2.03.11–85 «Защита строительных конструкций от коррозии» и СНиП 3.04.03–85 «Защита строительных конструкций и сооружений от коррозии».

Допускаемые отклонения при монтаже ферм (регламентированы СНиП III–18–75):

Отклонение отметок опорных узлов ферм ……………………….… ±20 мм Стрела прогиба (кривизна) между точками закрепления участков сжатого пояса из плоскости …………………………….. 1/750 величины закрепленного участка, но не более

15 мм Отклонение расстояний между осями ферм по верхнему поясу.… ±15 мм

СПИСОК ЛИТЕРАТУРЫ

1. СНиП 2.01.07-85*. Нагрузки и воздействия / Госстрой России. – М.: ГУП ЦПП, 2003. – 44 с.

2. СНиП II-23-81*. Стальные конструкции / Госстрой России. – М.: ГУП ЦПП, 2000. – 96 с.

3.Серия 1.460.3 –17.1КМ. Стальные конструкции покрытий одноэтажных производственных зданий с применением ферм с поясами из труб.

4. Давыдов Е.Ю. Расчет и конструирование стержневых конструкций с применением круглых и прямоугольных труб: Учеб. пособие. – Минск, 1983. – 120 с.

5. Кузин Н.Я. Проектирование и расчет стальных ферм покрытий промышленных зданий: Учеб. пособие. – М.: Изд-во АСВ, 1998. – 184 с.

6. Мандриков А.П. Примеры расчета металлических конструкций: Учеб. пособие для техникумов. 2-е изд., перераб. и доп. – М.: Стройиздат, 1991. – 431с.

7. Металлические конструкции. Общий курс: Учебник для вузов/ Под общ. ред. Е.И.Беленя. 6-е изд., перераб. и доп. – М.: Стройиздат, 1986. – 560 с.

8. Металлические конструкции: В 3 т. Т. 1. Элементы стальных конструкций: Учеб. пособие для строит. вузов/ Под ред. В.В.Горева. – М.: Высш.шк., 1997. – 527 с.

9. Металлические конструкции: В 3 т. Т. 2. Конструкции зданий: Учеб. пособие для строит. вузов/ Под ред. В.В.Горева. – М.: Высш.шк., 1999. – 528 с.

10. Мурашко Н.Н., Соболев Ю.В. Металлические конструкции производственных сельскохозяйственных зданий. – Минск: Высшейшая школа, 1987. – 278 с.

11. Пособие по проектированию стальных конструкций (к СНиП II-23-81*. Стальные конструкции)/ ЦНИИСК им.Кучеренко Госстроя СССР. – М., 1989. – 148 с.

12. Пособие по проектированию стальных конструкций из круглых труб/ ЦНИИСК им.Кучеренко Госстроя СССР. – М.: 1983. – 69 с.

13. Проектирование металлического каркаса одноэтажного производственного здания. Ч. 1. Сбор нагрузок / Сост.: И.И.Зуева, Б.И.Десятов; Перм.гос.

техн.ун-т. – Пермь, 1998. – 47 с.

14. Расчет стальных конструкций: Справ. пособие/ Я.М.Лихтарников, Д.В.Ладыженский, В.М.Клыков. 2-е изд., перераб. и доп.– Киев: Будивельник, 1984.– 368 с.

16. Руководство по проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций/ ВНИИПНПромстальконструкция. – М., 1988. – 48 с.

Просмотров