Пдк фенола в воде. В чем опасность фенола в воздухе и каковы нормы? Происхождение вещества, химические и физические свойства

Вследствие активного развития производственных предприятий, заводов, расширения химической промышленности возникает все больше проблем с атмосферным воздухом, а именно, с его химическим и бактериологическим составом. Далеко не всегда производства используют высокотехнические средства для фильтрования выбросов, не говоря уже о том, что огромная часть отрицательных элементов и веществ попадает в воздух, просачиваясь из окружающих человека предметов: мебели, элементов современного дома и т.д. Так, и в количестве, превышающем норму, негативно отображается на самочувствии человека, его здоровье, а также на живых организмах в целом.

Чтобы своевременно предотвратить такое влияние, необходимо проводить исследования атмосферы на присутствие фенола, а главное – на превышение его предельно допустимой концентрации в воздухе. Этим занимаются профессиональные лаборатории экспертов, которые имеют в своем распоряжении специальные исследовательские комплексы, аппараты, а также квалифицированы для проведения анализов подобного рода. Экспертизы могут проводиться как в государственных учреждениях, так и независимыми организациями, такими как некоммерческое партнерство «Федерация Судебных Экспертов».

Независимые эксперты являются настолько же квалифицированными и уполномоченными проводить любые исследования в данной отрасли, как и государственные специалисты, так как каждый частный эксперт в обязательном порядке прошел сертифицирование. После этого он получает право на предъявление официальных заключений и результатов проведенного анализа. Многие отдают предпочтение независимым организациям экспертов, так как они, в отличие от государственных лабораторий, работают в условиях конкуренции и дорожат репутацией. Именно поэтому, клиент получает результаты оперативно, а их качество и точность гарантировано высоки.

Фенол это высокотоксичное вещество, которое в государственном нормативе внесено в категорию «два». Это означает, что химический элемент является достаточно вредным и даже опасным для организма, поэтому, необходимо не только проводить исследования атмосферного воздуха в доме, на рабочем месте или на объекте, но и, при необходимости, внедрять специальные мероприятия по удалению такового из воздуха.

Обнаружить фенол в воздухе рабочей зоны можно довольно часто, особенно если рабочий процесс проходит в непосредственной близости с объектами химической промышленности. Этот химический элемент используется при изготовлении пластмассы, при утеплении домов на строительных площадках или при изготовлении специальных расходных материалов. Кроме того, далеко нередко можно встретить фенол в воздухе квартиры, особенно если это новостройки, так как основная масса современной техники, мебели, и даже отделочных материалов включают в себя ряд высокотоксичных материалов в повышенном уровне концентрации.

Дабы иметь представление о том, насколько вредным является это вещество, государственные органы установили верхние грации – уровни предельно допустимой концентрации (ПДК) элементов (измеряющиеся в мг на м3), при которой, в данном случае, фенол не может сразу же непоправимо повлиять на функционирование организма человека. Так, согласно нормативам и правилам, ПДК фенола в воздухе рабочей зоне не должна превышать 0,3 мг/м3. Уточнение о концентрации в рабочей зоне означает, что элемент будет относительно нейтральным к человеческому организму, если его воздействие не превысит 8 часов 5 дней в неделю.


Учитывая, что фенол в атмосферном воздухе может находиться и вне рабочих или жилых зон, существуют нормы предельно допустимой концентрации и для среднесуточного выброса – 0,003 мг/м3. Такой низкий порог в очередной раз доказывает, что химический элемент очень опасный для всего живого. Этот уровень (а желательно иметь показатели еще ниже) должен встречаться не только на улицах городов, но и непосредственно на объектах, например, в зонах промышленных производств. Также, бывают ситуации, когда происходит разовое воздействие на организм данного вещества. Максимальная разовая ПДК фенола в воздухе ни в коем случае не должна превышать 0,01 мг/м3.

При взаимодействии с фенолом, обязательно необходима дополнительная защита для слизистой глаз и дыхательных путей, особенно, если имеется в виду регулярная работа с данным веществом. Такие условия предопределены ГОСТом, и их невыполнение и пренебрежение такими правилами может негативно сказаться не только на работнике, но и на работодателе, если об этом узнают соответствующие государственные органы контроля. Определение фенола в воздухе может стать толчком для введения очистительных мероприятий, так как элемент имеет свойство очень быстро всасываться в организм и влиять на сердечнососудистую систему, дыхательные пути, легки и бронхи, а также нервную систему, вызывая такие побочные эффекты как: головные боли, потерю сознания, тошноту, головокружение и т.п.

Таким образом, воздух должен регулярно исследоваться и проверяться на соответствие нормам предельно допустимой концентрации фенола, так как в противном случае, последствия могут быть крайне негативными. Обращаясь за помощью к экспертам в исследовательские лаборатории независимого типа, вы можете быть точно уверены, что получите результаты экспертизы в наиболее короткие сроки без необходимости ожидания в очереди государственных центров. НП «Федерация Судебных Экспертов» гарантирует высокую точность и оперативность. Кроме того, НП «ФСЭ» специализируется и на проведении широчайшего ряда других экспертиз, которые не связаны с исследованиями атмосферы: химической, биологической, генетической, медицинской, экономической и других экспертиз.

Стоимость экспертизы

Услуга Протокол исследований Заключение специалиста (досудебная экспертиза, 15-25 страниц) Заключение эксперта (судебная экспертиза, от 15 страниц)
Химический анализ воздуха на тяжелые металлы, хлорорганические соединения, фосфорорганические соединения, фторорганические соединения, оксид углерода (II), оксид углерода (IV), кислород (%), оксиды азота, оксиды серы, сероводород, пары минеральных кислот, органические кислоты, ПАУ, дифосфор пентаоксид, меркаптаны, фенолы (гидроксибензол и производные), формальдегид, полициклические ароматические углеводороды, антрацен, бензол, этилбензол, толуол, этенилбензол (стирол), диметилбензол (ксилолы), фенантрен, кумол, крезол, винилхлорид, дифосфор пентаоксид (Р 2 О 5), меркаптаны (по этантиолу), сложные эфиры карбоновых кислот, бенз(а)пирен, аммиак, амины, взвешенные вещества (пыль), пыль силикатная, асбестовая и др., пыль полиметаллическая и ряд других соединений (всего до 2500 веществ) От 1 400 р. за один показатель в одной пробе От 11 400 р. От 21 400 р.
Бактериологический (микробиологический) анализ воздуха (БАК анализ) 3 000 р. за одну пробу От 13 000 р. От 23 000 р.
Комплексный анализ воздуха (базовый на 14 показателей) 14 000 р. за одну пробу От 24 000 р. От 34 000 р.
Комплексный анализ воздуха (расширенный на 20 показателей) 18 000 р. за одну пробу От 28 000 р. От 38 000 р.
Собрать и обезвредить ртуть. Локализация ртути и определение концентрации паров. До 25 м 2 - 8 000 р. +2 000 р./доп.помещение

Дополнительные услуги:

Экологические проблемы все острее стоят перед современным человечеством. Особенно серьезным вопросом является качество воздуха, который загрязняют выхлопные газы и выбросы промышленных предприятий. Чтобы встретить врага во всеоружии, следует ознакомиться с ПДК вредных веществ в воздухе.

ПДК вредных веществ в атмосферном воздухе

Что же такое ПДК ? ПДК – это предельно допустимая концентрация химических элементов и их соединений в воздухе, которая не вызывает негативных последствий у живых организмов. Нормативы предельно допустимых концентраций вредных веществ утверждаются в законодательном порядке и контролируются санитарно-эпидемиологическими службами (в России – Роспотребнадзором) при помощи токсикологических исследований. ПДК каждого опасного для здоровья вещества входит в ГОСТы, соблюдение которых является обязательным. В случае нарушения норм ПДК каким-либо предприятием на него налагают штраф или вовсе закрывают. Предельно допустимая концентрация устанавливается для людей, которые наиболее подвержены влиянию химикатов (детей, пожилых людей, людей с заболеваниями дыхательной системы и т.д.). Величина ПДК для воздуха измеряется в мг/м3, также предельно допустимая концентрация существует для воды, почвы и продуктов питания.

ПДК вредных веществ в атмосферном воздухе бывает разная:

  • ПДК МР – максимальная разовая концентрация вещества. Она не должна влиять на живые организмы в течение 20–30 минут.
  • ПДК СС – среднесуточная концентрация. Эта ПДК не должна оказывать отрицательного воздействия на живые организмы в течение неопределенно долгого времени.

Классы опасности веществ

По степени воздействия на организм вредные вещества подразделяются на четыре класса опасности. Для каждого класса опасности установлена своя ПДК. Выделяют следующие классы опасности веществ в атмосферном воздухе:

  1. вещества чрезвычайно опасные (ПДК менее 0,1 мг/м3);
  2. вещества высокоопасные (ПДК 0,1–1 мг/м3);
  3. вещества умеренно опасные (ПДК 1,1–10 мг/м3);
  4. вещества малоопасные (ПДК более 10 мг/м3).

Также существует классификация вредных веществ по эффекту воздействия на живой организм. При этом некоторые вещества относятся сразу к нескольким классам:

  • Общетоксические – вещества, вызывающие отравление организма в целом. При их воздействии наблюдаются судороги, расстройства нервной системы, паралич.
  • Раздражающие – вещества, поражающие кожу, слизистую оболочку дыхательных путей, легких, глаз, носоглотки. Длительное воздействие приводит к нарушениям дыхания, интоксикации и летальному исходу.
  • Сенсибилизаторы – химикаты, вызывающие аллергическую реакцию.
  • Канцерогены – одна из самых опасных групп веществ, провоцирующая возникновение онкологических заболеваний.
  • Мутагены – вещества, изменяющие генотип человека. Они снижают сопротивляемость организма к заболеваниям, вызывают раннее старение и могут сказаться на здоровье потомства.
  • Влияющие на репродуктивное здоровье – вещества, вызывающие отклонения в развитии у потомства (необязательно в первом поколении).

Ниже приведена таблица ПДК некоторых вредных веществ в атмосферном воздухе, установленной в Российской Федерации:

Оксид углерода (СО)

Еще одно название оксида углерода, угарный газ, знакомо нам с малых лет. Он часто встречается в быту – например, СО выделяется из-за неисправностей газовых колонок и кухонных плит. Для отравления этим газом нужна совсем небольшая его концентрация. У оксида углерода нет цвета и запаха, что делает его еще опаснее. Интоксикация происходит стремительно, человек может потерять сознание в считанные секунды. Несмотря на то, что класс опасности оксида углерода – четвертый, его воздействие приводит к летальному исходу буквально за несколько минут. Почувствовав трудности с дыханием, головную боль, отсутствие концентрации, снижение слуха и зрения, необходимо по возможности открыть все окна и двери и как можно быстрее покинуть помещение.

Аммиак (NH3)

Аммиак – бесцветный газ с резким, едким запахом. Большинству он известен в качестве десятипроцентного водного раствора – нашатырного спирта. Несмотря на то, что вдыхание паров аммиака имеет возбуждающее действие и помогает при обмороках, с этим газом следует быть осторожнее. Аммиак раздражает слизистую оболочку глаз, вызывает удушье, а при высокой концентрации приводит к ожогам роговицы и слепоте, поражает нервную систему вплоть до необратимых изменений, снижает когнитивные функции мозга, провоцирует возникновение галлюцинаций.

Ксилол (C8H10)

Ксилол относится к третьему классу опасности, он способен вызвать острые и хронические поражения кроветворных органов. Ксилол – это жидкость без цвета, но с характерным запахом, которая применяется как органический растворитель для изготовления пластмассы, лаков, красок, строительного клея. В малых концентрациях ксилол никак не вредит человеку, однако при длительном вдыхании паров ксилола появляется наркотическая зависимость. Также ксилол поражает нервную систему, вызывает раздражение кожного покрова и слизистой глаз.

Оксид азота (NO)

Оксид азота – токсичный бесцветный газ. Он не раздражает дыхательные пути, поэтому человеку сложно его почувствовать. NO взаимодействует с гемоглобином и образует метгемоглобин, который блокирует дыхательные пути и вызывает кислородное голодание. Взаимодействуя с кислородом, газ превращается в диоксид азота (NO2).

Диоксид серы (SO2)

Диоксид серы, или сернистый газ, отличается характерным запахом, похожим на запах горящей спички. Вдыхание SO2 даже в небольшой концентрации может привести к воспалению дыхательных путей, вызвать кашель, насморк и хрипоту. Длительное воздействие провоцирует возникновение дефектов речи, чувства нехватки воздуха, отека легких. Также возможно поражение легочной ткани, но оно проявляется только спустя несколько дней после воздействия. Люди с заболеваниями дыхательной системы, например , наиболее тяжело переносят влияние SO2.

Толуол (C7H8)

Толуол проникает в организм человека не только через органы дыхания, но и через кожу. Симптомы отравления толуолом – раздражение слизистой оболочки глаз, заторможенность, нарушения работы вестибулярного аппарата, галлюцинации. Также толуол крайне пожароопасен и обладает наркотическим воздействием. До 1998 года он входил в состав клея «Момент» и до сих пор содержится в некоторых растворителях для лаков и красок.

Сероводород (H2S)

Сероводород – бесцветный газ с запахом, напоминающим тухлые яйца. Будучи очень токсичным, H2S воздействует в первую очередь на нервную систему, вызывает сильные головные боли, судороги и может привести к коме. Смертельная концентрация сероводорода составляет примерно 1 000 мг/м3. При концентрации от 6 мг/м3 начинаются головные боли, головокружения и тошнота.

Хлор (Cl2)

Хлор в виде газа имеет желто-зеленый цвет и острый раздражающий запах. Одни из первых симптомов отравления хлором – покраснение глаз, приступы кашля, боль в груди, повышение температуры тела. Возможно развитие бронхопневмонии, бронхита. Будучи сильным канцерогеном, хлор провоцирует возникновение раковых опухолей и туберкулеза. При высокой концентрации летальный исход может наступить после нескольких вдохов.

Формальдегид (HCOH)

Содержание в воздухе особенно повышено в больших городах, поскольку он является продуктом горения топлива автотранспорта. Также выбросы формальдегида происходят на химических, кожевенных и деревообрабатывающих предприятиях. Он отрицательно воздействует на генетический материал, репродуктивную и дыхательную системы, печень, почки. Отравление начинается с возрастающего поражения нервной системы – с головокружения, чувства страха, дрожи, неровной походки и т.д. Формальдегид официально признан канцерогеном, однако также обладает аллергенным, мутагенным и сенсибилизирующим действием.

Диоксид азота (NO2)

Диоксид азота – ядовитый газ красно-бурого цвета с характерным острым запахом. Образуется он в результате сгорания автомобильного топлива, деятельности ТЭЦ и промышленных предприятий. На начальном этапе воздействия диоксид азота нарушает работу верхних дыхательных путей, а впоследствии способен вызвать бронхит, воспаление или отек легких. Наиболее опасен этот газ для людей, страдающих бронхиальной астмой и другими легочными заболеваниями. Из-за цвета диоксида азота его выбросы называют «лисьим хвостом». С лисой этот газ связывает не только цвет, но еще и хитрость: чтобы «спрятаться» от людей, он ухудшает обоняние и зрение, поэтому его не так-то просто обнаружить.

Фенол (C6H5OH)

Фенол – один из промышленных загрязнителей, который губителен для животных и человека. При вдыхании паров фенола возникает упадок сил, тошнота, головокружение. Фенол негативно влияет на нервную и дыхательные системы, а также на почки, печень и т.д. Использование фенола часто приводит к плачевным последствиям. В семидесятых годах в СССР его использовали при строительстве жилых домов. Люди, жившие в «фенольных домах», жаловались на плохое самочувствие, аллергию, возникновение онкологических заболеваний и на другие недуги. Хотя фенол-формальдегидные смолы используются при изготовлении мебели, строительных материалов и многого другого, недобросовестные производители могут превышать допустимую норму или применять некачественные химикаты.

Бензол (C6H6)

Бензол – опасный канцероген. При отравлениях парами бензола у человека наблюдается головная боль, тошнота, перепады настроения, нарушения сердечного ритма, иногда – обмороки. Постоянное воздействие бензола на организм проявляется усталостью, нарушениями функций костного мозга, лейкозом, анемией. Зачастую первый признак отравления бензолом – эйфория, так как вдыхание его паров имеет наркотический эффект. Данное химическое соединение входит в состав бензина, используется для производства пластмасс, красителей, синтетической резины.

Озон (O3)

Этот газ с характерным запахом, при высоких концентрациях имеющий голубой цвет, защищает нас от ультрафиолетового солнечного излучения. Озон является природным антисептиком, обеззараживает воду и воздух. Еще в пользу озона говорит то, что воздух после грозы, насыщенный озоном, кажется нам свежим и бодрящим. К сожалению, озон вызывает крайне неприятные последствия. Он усугубляет аллергию, обостряет сердечные заболевания, снижает иммунитет и вызывает нарушения дыхания. Озон действует медленно, но крайне губительно в долгосрочной перспективе – особенно опасен данный газ для детей, пожилых людей и астматиков.

ПРОБЛЕМА НАУЧНОЙ ОБОСНОВАННОСТИ ПДК ФОРМАЛЬДЕГИДА ДЛЯ ВОЗДУХА ЖИЛЫХ ПОМЕЩЕНИЙ СТАЛА ОДНОЙ ИЗ САМЫХ ОСТРЫХ ТЕМ ЭКОЛОГИЧЕСКИХ ДИСКУССИЙ В НАШЕЙ СТРАНЕ. НЕ ПОТОМУ, ЧТО КТО-ТО ЗАЩИЩАЕТ «ВРЕДНЫЙ ФОРМАЛЬДЕГИД», А ПОТОМУ, ЧТО В ХОДЕ ОБМЕНА МНЕНИЯМИ ВЫЯВЛЯЕТСЯ ОБЕСКУРАЖИВАЮЩАЯ КАРТИНА НЕТОЧНОСТИ ИЗМЕРЕНИЙ В ПРАКТИКЕ ОБНАРУЖЕНИЯ ВЫДЕЛЕНИЯ ВРЕДНЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВ - ФОРМАЛЬДЕГИДА, МЕТАНОЛА, ФЕНОЛА. НО ТОЧНЫЕ ПРИБОРЫ - ГАЗОВЫЕ ХРОМАТОГРАФЫ НЕ ПРИМЕНЯЮТСЯ.
А ЗНАЧЕНИЯ ПДК УСТАНАВЛИВАЮТ НАПЕРЕКОР СУЩЕСТВУЮЩЕЙ МИРОВОЙ ПРАКТИКЕ.

Виктор Хабаров,
ст. научный сотрудник, к.хим.н.,
Институт физической химии
и электрохимии им. А.Н. Фрумкина РАН

Развитие производства и применение композиционных древесных материалов (КДМ) - фанеры, древесностружечных плит (ДСП), древесностружечных плит с ориентированной стружкой (ОСП) и древесноволокнистых плит (ДВП) на основе карбамидо-, меламино- и феноло-формальдегидных (КФ, МФ, ФФ) смол в гражданском и промышленном строительстве, для изготовления мебели и т.д. выдвигают повышенные требования к качественной и количественной достоверности результатов санитарно-химической оценки КДМ в моделированных и натурных условиях эксплуатации по формальдегиду, метанолу, фенолу и аммиаку. Многочисленные научные исследования в этой области говорят, что экологические проблемы производства и применения композиционных древесных материалов являются результатом: - принятия научно необоснованной предельно допустимой концентрации (ПДК) формальдегида 0,01 мг/м3 для воздуха жилых помещений; - снижения ПДК для воздуха жилых помещений фенола с 0,01 до 0,003 мг/м3 и аммиака с 0,2 до 0,04 мг/м3; - необеспеченная получения достоверных количественных результатов стандартами для определения выделения и содержания в фанере и ДСП формальдегида спектрофотометрическим методом с ацетилацетоновым реактивом; - неприменения методов газовой хроматографии (ГХ) для определения санитарно-химических характеристик фанеры, ДСП, ОСП, ДВП, КФ и МФ смол; - отсутствия регламентации ГОСТами содержания метанола и метилаля в КФ и метанола в ФФ смолах; - применения камер из нержавеющей стали для моделирования условий эксплуатации при проведении санитарно-химической оценки КДМ, которые не обеспечивают получение достоверных количественных результатов по формальдегиду, метанолу, фенолу и аммиаку

ОБ ОБОСНОВАННОСТИ ПДК ФОРМАЛЬДЕГИДА, МЕТАНОЛА, ФЕНОЛА И АММИАКА

Доказательной базой о научной необоснованности ПДК формальдегида для воздуха жилых помещений являются:

1) результаты санитарно-химической оценки массива древесины сосны и березы в моделированных условиях эксплуатации в камерах стекла методом ГХ;
2) использование водного раствора формальдегида для построения градуировочного графика при фотометрическом определении формальдегида в воздухе с ацетилацетоновым реактивом и хромотроповой кислотой.

Неприменение метода ГХ и использование водного раствора формальдегида для построения градуировочного графика при определении последнего в воздухе привело к ошибочному установлению величины ПДК формальдегида - 0,01 мг/м3 для воздуха жилых помещений в России. Связано это с тем, что водные растворы формальдегида представляют собой равновесную смесь моногидратаметиленгликоля СН2(ОН)2 и ряда гидратированных низкомолекулярных полимеров или полиоксиметиленгликолей с общей формулой НО(СН2О)nН. Состояние равновесия зависит от температуры и концентрации формальдегида в растворе.

Экспертная оценка существующих спектрофотометрических методик определения формальдегида показала, что методы определения с хромотроповой кислотой и ацетилацетоном неизбирательны и имеют нижнюю границу определяемых содержаний формальдегида 0,06 мг/м3 при заборе 15 л анализируемого воздуха. Не отработана методика отбора проб. Не учитывается влияние на результаты анализа сопутствующих метанола, фенола и других токсичных компонентов. Поэтому указанные методики в ряде случаев некорректны и не могут обеспечить достоверных результатов, особенно при концентрации формальдегида в воздухе ниже 0,06 мг/м3.

Проведённые исследователями, по санитарно-химической оценке, массива сосны и березы методом ГХ показывают, что выделение формальдегида из массива древесины сосны через 6 месяцев кондиционирования образцов в моделированных условиях эксплуатации при насыщенности 2,2 м2/м3, температуре 20, 40°С и газообмене 1 объём/ч составляет 0,15 мг/м3 и 0,165 мг/м3 и превышает ПДК формальдегида для воздуха жилых помещений в 15–17 раз. Концентрация формальдегида 0,15 мг/м3, выделяющегося из массива древесины сосны в моделированных условиях эксплуатации при температуре 20°С, должна быть ПДК формальдегида для воздуха жилых помещений.Опыт цивилизаций показал, что лучшим материалом для строительства жилья для человека является древесина, которая считается безвредной. Всемирная организация здравоохранения (ВОЗ) рекомендовала для воздуха замкнутых помещений и атмосферного воздуха ПДК формальдегида 0,1 мг/м3. Для контроля этого норматива формальдегида в воздухе используют методики на основе метода высокоэффективной жидкостной хроматографии (ВЭЖХ). В Германии установлен запрет на использование древесных (с покрытием и без него) материалов, уровень миграции формальдегида которых в воздушную среду превышает 0,1 ppm (0,124 мг/ м3). Этот же показатель установлен и в отношении мебели. В странах - членах Всемирной торговой организации (ВТО) норматив формальдегида для древесных плит и других полимерсодержащих древесных строительных материалов принят на уровне 0,124 мг/м3.

В России в методических указаниях по санитарно-гигиеническому контролю полимерных строительных материалов присутствовал список «Допустимые уровни (ДУ) выделения вредных химических веществ из полимерных строительных материалов», который содержал 68 химических соединений. Сегодня ни на сайте «Роспотребнадзора» и на сайте информационно-справочной системы «Кодекс» и «Техэксперт» не обнаружишь информации об отмене главным санитарным врачом России списка «Допустимые уровни выделения вредных химических веществ из полимерных строительных материалов». Возникает вопрос: на каком основании этот список не включён в новые методические указания? Сегодня ПДК, используемые в практике органов «Роспотребнадзора», для воздуха жилых помещений установлены самые жесткие в мире: формальдегида 0,01 мг/м3, фенола 0,003 мг/м3, аммиака 0,04 мг/м3. Они приводят к тому, что все строительные технологии с применением фанеры, ДВП и ДСП уже подлежат запрещению. На основе каких же научных данных «Роспотребнадзор» ужесточил норматив фенола в 3,3 раза, а аммиака в 5 раз для воздуха жилых помещений?

О НОРМАТИВНЫХ ДОКУМЕНТАХ
__________________________________________________

Положения законов Российской Федерации «О техническом регулировании», «О санитарно-эпидемиологическом благополучии населения», «Об обеспечении единства измерений», «О стандартизации», «О сертификации» и ГОСТ Р должны выполняться не только независимыми испытательными лабораториями, но и находиться в зоне ответственности производителей КДМ и синтетических смол. Научным сообществом проведен сравнительный экспертный анализ нормативных документов по санитарно-химическим характеристикам фанеры, используемой в гражданском строительстве, объектов транспорта, для изготовления мебели, действующих в странах Евросоюза и России.

В настоящее время страны Евросоюза используют стандарты для определения показателей безопасности фанеры, ДСП и ДВП только по формальдегиду спектрофотометрическим методом с ацетилацетоновым реактивом. Стандарты не предусматривают определение метанола и фенола.

Евросоюзом приняты стандарты для определения санитарно-химических характеристик фанеры, которые применяют при заключении контрактов на ее закупку. Стандартом EN 1084:1995 устанавливается три класса эмиссии формальдегида: А, В, С (при насыщенности объёма камеры поверхностью фанеры 0,06 см2/м3, температуре 60°С и газообмене 15 объёмов/ч в течение 4 ч), которые определяются по стандарту EN 717-2-1995 спектрофотометрическим методом с ацетилацетоновым реактивом. Класс А - до 3,5 мг/м2·ч; класс В - 3,5–8,0 мг/м2·ч; С - более 8 мг/м2·ч. Стандарт EN 1084:1995 применяется к фанере, ДСП и ДВП на основе КФ и
МФ смол. Стандарт не должен применяться к фанере, ДСП и ДВП на основе ФФ смол. В Германии фанера класса эмиссии формальдегида В и С недопустима для применения. Отечественный ГОСТ Р 53867, принятый в 2010 году, дублирует стандарт стран Евросоюза EN 717-2-1995. В России для определения показателей безопасности фанеры, ДСП, ДВП по формальдегиду используют титрометрический метод (ГОСТ 27678-88), спектрофотометрический метод с ацетилацетоновым реактивом (ГОСТ 30255-95 и ГОСТ Р 53867-2010) и не контролируют определение метанола и фенола. ГОСТы не соответствуют уровню требований стран ВТО и современным требованиям внутреннего рынка.

К действующим стандартам стран Евросоюза для определения формальдегида, выделяющегося из КДМ, спектрофотометрическим методом с ацетилацетоновым реактивом, страны - члены ВТО приняли стандарты, которые используют для определения формальдегида в воздухе методом ВЭЖХ с УФ-детектором (ГОСТ Р ИСО 16000-3-2007 и 16000-4-2007). Стандарты по определению формальдегида методом ВЭЖХ по чувствительности и точности уступают методу на основе газовой хроматографии - стандарту предприятия НИОКО «Биоэкомониторинг», который предусматривает определение в пробе формальдегида, метанола, метилаля и избирательное определение фенола, выделяющихся из КДМ.

К ИННОВАЦИОННОЙ МЕТОДОЛОГИИ
__________________________________________

Между тем именно в России в области метрологического обеспечения качества и соблюдения требований показателей безопасности КДМ достигнуты определенные положительные результаты после введения в 1996 году стандарта предприятия НИОКО «Биоэкомониторинг» газохроматографической методики, которая защищена 8 авторскими свидетельствами СССР и изложена в статьях. Для производителей КДМ эта инновационная методология определения санитарно-химических характеристик плит и синтетических смол методом весьма важна. Поэтому расскажем ней подробнее. Методика ГХ предназначена для
определения:

Формальдегида, метанола, метилаля и фенола, выделяющихся из фанеры, ДСП, ОСП и ДВП на основе синтетических смол в моделированных условиях эксплуатации при насыщенности 0,4–2,2 м2/м3, температуре 20, 40°С и газообмене 0,5–5,0 объёма/ч;
- методом ГХ и парофазного анализа (ПФА) определяют также формальдегид, метанол, метилаль и фенол в КДМ и синтетических смолах при температуре 80–85°С;
- методом капиллярной ГХ: летучих органических веществ, выделяющихся из КДМ на основе синтетических смол в моделированных условиях эксплуатации.

Измерение концентраций химических веществ - формальдегида, метанола, метилаля и фенола, выделяющихся из фанеры, ДСП, ОСП и ДВП, проводят в моделированных условиях эксплуатации (мг/м3, мг/м2·ч) и остаточного содержания химических веществ (мг/100 г, % мас.) в КДМ методом ГХ и динамического ПФА. Определение фенола проводят раздельно от формальдегида, метилаля и метанола. Для концентрированная фенола применяют термостойкий пористый полимерный сорбент полихром-3, который не концентрирует формальдегид, метилаль и метанол при комнатной температуре. Для концентрирования формальдегида и метанола применяют термостойкие пористые полимерные сорбенты полифенилхиноксалин или цезийсорб. Сконцентрированные фенол, формальдегид и метанол из патронаконцентратора вводят в аналитическую колонку методом термической десорбции с помощью устройства, которое исключает непробиваемый объём между иглой патрона-концентратора и мембраной испарителя газового хроматографа.

Определение формальдегида, метилаля и метанола в КДМ и КФ смолах проводят методом ГХ и динамического ПФА при температуре 80–85°С путём ввода парогазовой пробы в аналитическую колонку с помощью устройства для ПФА с петлей объёмом 15 см3. Определение формальдегида, метилаля и метанола проводят на колонке с полифенилхиноксалином, а фенола - на колонке с 2% полиэтиленгликольадипината (ПЭГА) на полихроме-1. Для идентификации летучих органических веществ, выделяющихся из КДМ в моделированных условиях эксплуатации, используют стеклянные капиллярные колонки (СКК) с SE-30 и NaCI и многое другое.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
_________________________________________

Экспериментальные исследования определения методом ГХ санитарно-химических характеристик фанеры на основе КФ, ФФ смол и КФ смоле опубликованы и приведены результаты их санитарно-химической оценки. Она велась в моделированных условиях эксплуатации методом ГХ и спектрофотометрическим методом с ацетилацетоновым реактивом, а также определяли содержание органических веществ в КФ смоле (табл. 2). Из таблицы 2 следует, что санитарно-химическая оценка фанеры методом ГХ на стеклянной капиллярной колонке (СКК) с SE-30 и NaCI зависит от режима сушки шпона и вида теплоносителя. Фанера из шпона березы, высушенного в газовой сушилке газами при горении природного газа, выделяет 26 органических веществ и из шпона березы, высушенного в газовой сушилке газами при сжигании древесины, - 60 органических веществ. Шпон берёзы, высушенный в паровой сушилке, выделяет 18 органических веществ. Сравнение результатов (табл. 2) фанеры толщиной 8, 9, 15 и 18 мм в моделированных условиях эксплуатации по стандарту предприятия НИОКО «Биоэкомониторинг» показывает, что концентрации выделения формальдегида (мг/м2·ч), полученные методом ГХ, в 2,2–4,9 раза ниже по сравнению с применяемым Евросоюзом спектрофотометрическим методом с ацетилацетоновым реактивом, где стандарт определяет сумму органических веществ, которые ошибочно принимают за формальдегид.

Фанера по классу эмиссии формальдегида по стандарту методом ГХ соответствует классу В, а спектрофотометрическим методом с ацетилацетоновым реактивом - классу С. Ясно, за счет чего стандарты стран Евросоюза занижают сортность фанеры и, соответственно, цены на неё. Из таблицы 2 следует, что в образцах КФ смолы наряду с формальдегидом и метанолом содержится метилаль. В КФ смоле марок КФ 115-53 и КФМТ-15 содержится, соответственно, больше метанола в 1,9 и 2,9 раза и метилаля в 1,4 и 2,5 раза по сравнению с формальдегидом. В исследуемых образцах фанеры методом ГХ не обнаружено метилаля, что указывает на его разложение при прессовании фанеры. Образцы фанеры, содержащие в составе КФ смолы и лигносульфонаты, выделяют больше метанола в 4,2–4,7 раза по сравнению с фанерой, не содержащей лигносульфонатов. Получены санитарно-химические характеристики фанеры на основе КФ смолы, шпона березы и КФ смолы методом ГХ с помощью устройства для ПФА (табл. 3–5). Для разделения смеси, содержащей формальдегид, метанол, воду, метилаль, использовали полифенилхиноксалин. Сравнение результатов таблицы 3 показывает, что при определении методом ГХ с помощью устройства для ПФА в фанере содержится метанола в 7–8 раз больше по сравнению с формальдегидом. Содержание формальдегида в фанере, определенное методом ГХ, ниже в 3,6–7,4 раза по сравнению с титрометрическим методом по ГОСТ . При определении формальдегида в фанере в соответствии по ГОСТ 27678-88 определяется сумма органических веществ, которую ошибочно принимают за формальдегид.

Из таблицы 3 также следует, что шпон березы, высушенный в газовой сушилке, содержит формальдегида в 1,3 раза больше, а метанола в 1,6 раза меньше по сравнению со шпоном берёзы, высушенным в паровой сушилке. В шпоне берёзы, высушенном в газовой сушилке, повышенное содержание формальдегида связано с тем, что при горении природного газа образуется формальдегид, который сорбируется шпоном в газовой сушилке, а пониженное содержание метанола связано с более жестким режимом сушки шпона в газовой сушилке по сравнению с паровой сушилкой. При определении методом ГХ летучих органических веществ в КФ смоле использовали тот же методический подход, что в фанере и шпоне (табл.3). Динамика выделения формальдегида, метанола и метилаля из КФ смолы при температуре 80°С протекает за счёт диффузии.

Из таблицы 4 следует, что в смоле КФМТ-15 содержится больше метанола в 2,4 раза и метилаля в 3,6 раза по сравнению с формальдегидом. Метилаль образуется при хранении технических растворов формальдегида (Уокер ДЖ. Формальдегид / Пер. с англ. М.: Госхимиздат, 1957. - 608 с.). Определение летучих органических веществ, выделяющихся из фанеры на основе КФ смолы в моделированных условиях эксплуатации (табл. 5). Из таблицы 5 следует, что фанера толщиной 9 и 18 мм при насыщенности 0,4 и 1,0 м2/м3 выделяет формальдегида выше ПДК для воздуха жилых помещений в 2,2–8,0 раза. Фанера толщиной 18 мм при насыщенности 1 м2/м3 выделяет метанола выше ПДК в 1,8 раза и в 4–13 раз больше по сравнению с формальдегидом. Это может быть обусловлено следующими факторами:
1) При синтезе КФ смолы использовали водный раствор формальдегида, содержащий высокие концентрации метанола.
2) При хранении водных растворов формальдегида с ними могут происходить следующие изменения:
а) реакция Канниццаро, состоящая в окислении одной молекулы формальдегида до муравьиной кислоты и восстановлении другой до метанола; б) образование метилаля. Методом ГХ проведена также санитарно-химическая оценка российской фанеры толщиной 10 мм из шпона сосны на основе КФ и ФФ смол, в моделированных условиях эксплуатации (табл. 6).

Установлено, что концентрации летучих органических веществ, выделяющихся из этой фанеры (на основе КФ смолы при насыщенности 0,4–2,2 м2/м3) превышает ПДК по формальдегиду в 7–40 раз и не превышает по метанолу; а на основе ФФ смолы при насыщенности 0,4–1,2 м2/м3 превышает ПДК по формальдегиду в 8–25 раз и не превышает по метанолу и фенолу, а при насыщенности 2,2 м2/ м3 превышает ПДК по формальдегиду в 46 раз, метанолу - 1,8 раза и фенолу - 5,7 раза.

БЛАГОДАРЯ КОМУ СТРАНЫ ЕВРОСОЮЗА СНИЖАЮТ СОРТНОСТЬ ФАНЕРЫ
____________________________________________________

Как видим, для определения санитарно-химических характеристик КДМ и синтетических смол необходимо использовать метод ГХ, динамический ПФА и термостойкие полимерные сорбенты для концентрированная - полихром-3, цезийсорб и поли-фенилхиноксалин. Полихром-3 при комнатной температуре избирательно концентрирует из газовой среды фенол, выделяющийся из КДМ, не концентрирует формальдегид и метанол. Полифенилхиноксалин и цезийсорб концентрируют формальдегид и метанол. Применение указанных сорбентов позволяет реализовать методический подход раздельного анализа фенола и формальдегида при комнатной температуре. Метод ГХ, принципиальная схема его реализации, устройство в свое время были взяты на вооружение в нашей стране. Он оказался вполне доступным. Однако последующие события, развал науки, затормозили внедрение. Мы полагаем, что сейчас наступило его время.

Он нужен производителям КДМ и синтетических смол, окажет неоценимую помощь технологам и экологам. Абсолютно точные данные его анализа показывают, что в моделированных условиях эксплуатации в мг/м2·час при температуре 60°С, концентрации выделения формальдегида, полученные методом ГХ, в 2,2–4,9 раза ниже по сравнению со спектрофотометрическим методом с ацетилацетоновым реактивом. Хроматографический метод показывает, что с определением выделения вредных веществ из КДМ - фанеры, ДСП, ОСП, ДВП и других материалов все обстоит совсем не так, как представляют те, кто придумал нормативы содержания формальдегида в КДМ и утвердил методики спектрофотометрического определения формальдегида.

Ведь эти методики не дают точных измерений выделения
формальдегида, но ведут к весьма нежелательным последствиям. Стандарты стран Евросоюза EN 1084:1995 и EN 717-2-1995 занижают сортность фанеры и, соответственно, цены на фанеру. Российские производители фанеры, её экспортеры, теряют валюту, но доказать, что продукция их высокосортная, не могут, потому в России не используют газохроматографические методики определения формальдегида. Закон РФ «Об обеспечении единства измерений» разрешает использовать для сертификации КДМ не только гостированные методики определения вредных органических веществ, но и методики в виде стандарта предприятия, которые должны быть разработаны в соответствии с ГОСТ 8.563-2009 «Методики (методы) измерений» и пройти метрологическую аттестацию.

Очевидно, что нашим министерствам, Росприроднадзору и всем компаниям, кто по-настоящему заботится об экологии, безвредности материалов, безопасности человека и прибыльности бизнеса, необходимо делать поворот к достоверному контролю за выделением из КДМ не только формальдегида, но и метанола и фенола.

Полостью статью читайте в журнале «Химия и бизнес»
№ 5-6 (192)

© Химия и бизнес. Републикация информации только при указании на

Фенол относится к токсическим веществам. Использование данного вещества распространено в строительстве, химической и фармацевтической промышленности. Человеку желательно знать симптомы отравления фенолом, и помощь, которую необходимо оказывать в данной ситуации.

Фенол является простейшим представителем веществ, которые относятся к классу фенолов или так называемых ароматических углеводородов. Чаще всего это вещество используется для нужд строительства, производства органических материалов (пластмассы) и химической промышленности. Также он востребован и в других отраслях науки, в том числе в медицине и сельскохозяйственной химии.

В 1834 году, в процессе перегонки каменноугольных смол было открыт фенол, причём его не синтезировали, как некоторые другие вещества, а выделили из угольных пластов. За более чем полтора века вещество успело поменять название (старое название - «карболовая кислота»; химики до сих пор называют его «карболка»).

На сегодняшний день наименование химического соединения, к которому относится фенол - гидроксибензол. Со временем были уточнены некоторые физические свойства фенола, которые в XIX веке установить без погрешностей было проблематично. Молярная масса фенола равна 94,11 г/моль, его плотность составляет 1.07 грамм на кубический сантиметр.

Интересно, что при температуре в 40,9 градусов по Цельсию вещество - которое в своём обычном агрегатное состоянии является кристаллическим - начинает плавиться, приобретая характерный оттенок. При обычной (комнатной) температуре фенол представляет собой небольшие кристаллы, не имеющие цвета. Эти кристаллы сильно пахнут гуашью; запах фенола очень специфичен и способен надолго «прицепляться» к предметам и одежде.

Способность гидроксибензола к образованию однородных систем с другими веществами (проще говоря, растворимость) не очень высокая; это вещество не может полностью раствориться в воде. Фенол, формула которого C6H5OH, является токсическим и едким веществом, относящимся к ирритантам - раздражителям слизистой оболочки и кожных покровов человека.

В качестве антидота к фенолу используют 10% раствор глюконата кальция (как правило, внутривенно). Однако следует заметить, что если человек никогда в жизни не делал никому инъекции, то лучше будет дождаться приезда врачей, где в токсикологическом отделении пострадавшему окажут необходимую помощь.

Малая величина предельно допустимой концентрации (ПДК) фенолов в природных водах (0,001 мг/л) ставит перед аналитической химией сложную задачу. В частности, многие методы определения фенолов (броматометрический, колориметрический с применением /г-нитроанилина, 4-аминоантипирнна и др.), применяемые для анализа сточных вод, из-за низкой чувствительности оказываются неприменимыми для анализа природных вод.[ ...]

Фенол СбН5ОН - горючее бесцветное кристаллическое вещество. Растворим в этаноле, этиловом эфире, хлороформе. Растворимость в 100 г воды при 15 °С - 8,2 г, образует азеотропный раствор с водой, кипящий при 99,52 °С. Содержание воды 90,79% (масс.). Средства пожаротушения - тонкораспыленная вода, омыленная химическая и воздушно-механическая пены. Фенол действует на нервную систему, обладает сильным местным раздражающим и прижигающим действием. Вдыхание паров вызывает головокружение, тяжесть в голове, одышку, хрипоту. Предельно допустимая концентрация в воздухе рабочей зоны 0,5 мг/м3, в воде водоемов хозяйственно-питьевого и культурно-бытового водопользования 0,001 мг/л. Средства индивидуальной защиты - спецодежда из плотной ткани, резиновые перчатки, сапоги и противогаз с коробкой марки В.[ ...]

Предельно допустимая концентрация не установлена. Вероятно, должна быть такого же порядка, как и для фенола.[ ...]

Предельно допустимая концентрация фенола в воздухе 5 мг/м3.[ ...]

Предельно допустимая концентрация фенола в воде водоемов рыбохозяйственного значения установлена равной 0,001 мг/л без всяких оговорок.[ ...]

Фенол является нервным ядом, обладает сильным раздражающим и прижигающим действием. Предельно допустимая концентрация в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования 0,001 мг/л. Относится к 4-му классу опасности.[ ...]

Среднегодовая концентрация пыли, фенола, аммиака и двуокиси азота в городах России выше санитарной нормы. В этих городах в 1991 - 1993 гг. отмечались уровни так называемого «экстремально высокого» загрязнения более предельно допустимого коэффициента. Об этом свидетельствует ранжированный перечень городов РФ с наибольшим выбросом загрязняющих веществ в атмосферный воздух в 1993 г.[ ...]

Руководствуясь предельно допустимыми нормами содержания отдельных веществ в воде водоема, следует иметь в видуг что такие вещества, как нефть и фенол, сброс которых лимитируется по органолептическим показателям, при совместном их. присутствии будут ухудшать качество воды в большей степени, чем каждый из них в отдельности. Поэтому вода иногда может оказаться непригодной для бытового водопользования, несмотря на то что санитарные нормы сброса каждого вещества в отдельности были выдержаны. Чтобы такого явления не произошло, предельно допустимую концентрацию загрязнений необходимо уменьшать во столько раз, сколько веществ составляет комплекс.[ ...]

Очень малые значения предельно допустимых концентрация фенолов в воде диктуют необходимость применения высокочувствительных и специфичных методов их определения.[ ...]

Во второй группе веществ (фенол и ксилол) каждое в отдельности не превышает предельно допустимую концентрацию. Но вместе в водоеме они могут быть только в концентрации, составляющей 50% предельно допустимой, т. е. уменьшенной в два раза. Следовательно, необходимы дополнительные мероприятия для снижения концентраций этих веществ при совместном присутствии.[ ...]

В воздухе, насыщенном парами фенола при 24°, может содержаться около 2,35 г/м3 фенола. Предельная допустимая концентрация фенолов в воздухе на рабочем месте составляет 5 мг/м3.[ ...]

От других органических веществ фенолы отличаются тем, что достаточно наличия самых небольших количеств их в воде, чтобы при хлорировании в ней возникли сильные и крайне неприятные хлорфенольные запахи и привкусы. Если пороговая концентрация фенола составляет по запаху 25 мг/л, то при хлорировании порог по запаху уменьшается до 0,001-0,0002 мг/л, для трикрезола - 0,0025 и 0,001-0,0002, для креозота - 0,125 и 0,01 - 0,05 мг/л соответственно. Предельно допустимая концентрация фенола в воде составляет 0,001 мг/л. Озонирование фенолсодержащей воды не только не провоцирует запах фенола, но и разрушает это соединение до оксалатов и бикарбонатов.[ ...]

По этому же признаку установлена предельно допустимая концентрация фенола. Содержание его в воде 0,01 мг/л не оказывает токсического воздействия на рыб и другие водные организмы, но мясо рыб приобретает неприятный привкус. Исходя из этих соображений, государственная санитарная инспекция рекомендует концентрацию, разную 0,001 мг/л.[ ...]

Чувствительность методов определения фенолов (как и всех органических веществ) может быть увеличена также за счет концентрирования на сорбентах, в данном случае фильтрованием определенного объема сточной воды, содержащей фенол, через колонку с активным углем со скоростью примерно 2-3 м/час. Затем через активный уголь пропускают несколько раз небольшое количество 2,5 н. раствора щелочи и определяют фенол уже в полученном небольшом объеме этого раствора. Таким методом можно определить 0,001 мг/л фенола, что является предельно допустимой концентрацией, установленной Государственной санитарной инспекцией.[ ...]

Махиня А. П. Материалы ¡к гигиеническому обоснованию предельно допустимых концентраций сернистого газа в сочетании с фенолом.- В кн.: Биологическое действие и гигиеническое значение атмосферных загрязнений. М., 1968, с. 151.[ ...]

В отличие от загрязнений природы нефтью загрязнения фенолами происходят в значительно меньших размерах. Скорость распада фенолов в воде зависит как от их химического строения, так и от окружающих условий. Особую роль при этом играют УФ-излучение, микроорганизмы и концентрация кислорода в воде. Простые фенолы в аэробных условиях под действием соответствующих бактерий, полностью распадаются в течение 7 дней на 96-97% от исходного количества. В анаэробных условиях распад идет медленнее. Концентрации фенолов в европейских водах, как правило, не являются токсичными. Так, например, в Рурской области средняя концентрация фенолов составляет 0,25 мкг/л. Столь ма-, лые концентрации все же влияют на вкус воды и мяса рыбы. В сильно хлорированной воде образуются хлорфенолы, которые ухудшают вкус воды еще в большей степени, чем негалогенизиро-ванные фенолы. Нормативы, принятые для питьевой воды, устанавливают предельно допустимую концентрацию фенолов на уровне 0,5 мкг/л.[ ...]

Главной государственной санитарной инспекцией СССР установлена предельно допустимая концентрация летучих фенолов в питьевой воде, равная - 0,001 мг/л .[ ...]

Профессор: Давайте проведем простейший расчет ресурса фильтра но фенолу и все станет понятно. Предположим, что Ваша семья потребляет для пищевых целей ведро воды (10 литров) в сутки. Пусть в подлежащей очистке воде содержание фенола достигает уровня 1990 года, т. е. 30 ПДК (напоминаю, что предельно допустимая концентрация фенола по СанПиН 0,001 мг/д).[ ...]

Наличие большого количества веществ, для каждого из которых установлена предельно допустимая концентрация, ставит перед станцией наблюдения задачу определить перечень веществ и показателей, подлежащих контролю в первую очередь. К такому отбору возможны разные подходы. Так, наблюдение ведется прежде всего за веществами, выброс которых имеет массовый характер, а поэтому загрязняет окружающую среду (за нефтепродуктами, фенолами, детергентами, некоторыми металлами, особо токсичными веществами, а также веществами, специфичными для выбросов в данном районе). Наблюдение может проводиться за температурным режимом водного объекта, содержанием взвешенных веществ, минерализацией, цветом воды, прозрачностью и т. п.[ ...]

Пример 1. Определить число ступеней, необходимых для сокращения содержания фенола в воде до предельно допустимой концентрации.[ ...]

Семенченко и Каплиным разработан метод раздельного определения одноатомных фенолов (карболовая кислота, крезол, ксиленолы) и двухатомных фенолов (пирокатехин, гидрохинон, резорцин) в природных водах при помощи газо-жидкостной хроматографии. Метод основан на предварительном превращении фенолов в их метиловые эфиры, так как их непосредственное определение затруднено высокой полярностью диоксибензолов, которая вызывает асимметричность пиков па хроматограмме фенолов и предъявляет Жесткие требования к выбору твердого носителя. Метиловые эфиры одноатомных и особенно двухатомных фенолов имеют значительно меньшую полярность, чем моно- и диокси-бензолы. Метод отличается неплохой чувствительностью и точностью. При объеме пробы 50 мл можно определять 0,050 мг/л фенолов с точностью ±10%. Несмотря на то, что чувствительность описанного метода недостаточна для определения фенолов в воде водоемов на уровне их предельно допустимой концентрации, имеются определенные возможности его совершенствования в этом направлении. В частности, можно увеличить в несколько раз объем пробы, применить более чувствительный хроматограф и т. д. Перспективность же метода очевидна.[ ...]

Ряд водоемов нашей страны также подвергается загрязнению. В некоторых водоемах концентрации вредных примесей (например, фенолов) превышают предельно допустимые.[ ...]

Принцип метода. Метод основан на получении нитрозосоедп-нения при взаимодействии фенола с азотистой кислотой. Нитро-зосоединение с избытком аммиака образует окрашенный в желтый цвет продукт реакции, который определяют колориметрически по стандартной шкале. Чувствительность метода 2 мг/м3. Предельно допустимая концентрация фенола в воздухе 5 мг/м3. Определению мешают другие фенолы.[ ...]

При разработке термальных вод важным показателем является наличие токсичных веществ (фенолов, бензола, мышьяка, аммиака и др.). Термальные воды подразделяются на: токсичные, в которых содержание компонентов превышает нормы предельно допустимой концентрации, и нетоксичные, в которых содержание компонентов отвечает этим нормам.[ ...]

При совместной очистке сточных вод НПЗ и НХЗ основным загрязнителем является, как правило, фенол. Исследования и опыт эксплуатации отечественных и зарубежных биохимических очистных сооружений НПЗ и НХЗ показывают, что предельно допустимая концентрация фенола при очистке нефтьсодержащих стоков составляет 50 мг/л. Правда, имеются сведения, что при достаточно длительной адаптации и отсутствии залповых выбросов в аэротэнке могут очищаться сточные воды с концентрацией фенолов, достигающей 2-3 г/л . Такие высокие концентрации, видимо, могут быть достигнуты при очистке только фенольных стоков.[ ...]

В процессе очистки промышленных стоков высокотоксичные и взрывоопасные вещества (фенолы, метанол, формальдегид и др.) могут попасть в рабочую зону и вызвать массовое отравление работающих, а также создать угрозу взрыва, поэтому вентиляция производственных помещений имеет первостепенное значение. Назначение вентиляции - поддержание концентрации вредных веществ в рабочей зоне на уровне, не превышающем предельно допустимого. Чаще всего применяется общеобменная приточно-вытяжная вентиляция с устройством местных отсосов и аспирациоиных вытяжек у мест наибольшего выделения вредных веществ. Загрязненный воздух выбрасывается из верхней или нижней зоны производственных помещений. Свежий воздух следует забирать из зон, не загрязненных вредными веществами. Кратность обмена воздуха устанавливается на основании данных о составе загрязнений в рабочей зоне (с учетом мероприятий по герметизации аппаратуры и коммуникаций) и характера производства. За режимом работы вентиляционных установок проводится постоянное наблюдение. Результаты осмотра, ремонта и контрольной проверки заносят I! специальный журнал. Все вентиляционные установки должны быть отрегулированы на запроектированную мощность и снабжены соответствующими паспортами.[ ...]

Очистка сточных вод, содержащих органические соединения. В случае превышения предельно допустимых концентраций необходима локальная очистка. Сброс этих сточных вод в I илиП систему канализации решается в зависимости от степени солесо-держания.[ ...]

Нередко производственные сточные воды содержат ряд вредных веществ, относимых по их действию к различным группам. Предельно допустимая концентрация их в этих случаях определяется по каждой группе в отдельности. Так, например, при содержании в воде ряда таких веществ, как цианиды, пиридин, бензол, фенол и ксилол, лимитирующим показателем вредности первых трех веществ является санитарно-токсикологический, а для двух последних - органолептический. Таким образом, в этом случае ло одному показателю 2=3, а по другому 2=2.[ ...]

В процессе производства пластмасс, салициловой и пикриновой кислот, ПАВ, присадок к маслам и бензинам и т.п. образуются отходы фенола (С6Н50Н). Фенол получают из каменноугольного дегтя и синтетически. Он является токсичным веществом, при попадании на кожу вызывает ожоги; предельно допустимая концентрация его в воздухе 5 мг/м3, в сточных водах 1-2 мг/м3. Фенол служит основным сырьем при получении феноло-формальдегидных пластмасс. Отходами производства являются фенольная смола и фенольная вода. Образование фенольной смолы идет на стадии кислотного разложения гидроперекиси изопропилбензола на фенол и ацетон.[ ...]

Значительные выбросы специфических вредных веществ, таких как сероводород, сероуглерод, фтористые соединения, бенз(а)пирен, аммиак, фенол, углеводород, из-за большой токсичности предопределили превышение допустимых санитарно-гигиенических норм. Средние за год концентрации сероуглерода превышают предельно допустимые концентрации в Магнитогорске - в 5 раз, в Кемерово - в 3 раза, бенз(а)пирена: в Новокузнецке - в 13 раз, Магнитогорске - в 10 раз, Ново-троицке - в 7 раз, Нижнем Тагиле - в 5 раз, Череповце - в 13 раз и т.д.[ ...]

От неучтенных сбросов гибнут малые реки, особенно в Калмыкии, Башкирии, Белгородской, Воронежской, Саратовской, Челябинской, Вологодской областях. Нефтепродукты и фенолы задушили речку Охту в Петербурге - их предельно допустимые концентрации превышены там в 10 раз.[ ...]

Использование сточных вод для промышленного водоснабжения в корне меняет ряд требований к качеству очистки стоков. В ряде случаев в силе остается большая часть тех предельно допустимых концентраций загрязнений, которые установлены по токсико-гигиеническим показателям, но излишним оказывается сохранение ПДК, установленных для хозяйственно-питьевых вод по органолептическим показателям. Так, труднодостижимое соблюдение ПДК фенола 0,001 мг/л важно при использовании водоема для питьевого водоснабжения, поскольку хлорирование воды, содержащей большое количество фенолов, приводит к возникновению хлорфенольного запаха и привкуса. При использовании очищенных сточных вод для подпитки систем замкнутого бессточного промышленного водоснабжения, из которых продувочные сбросы не производятся, допустимое содержание фенола в воде можно увеличить в несколько тысяч раз, т. е. оно может составлять 1-3 мг/л без всякого вреда для аппаратуры, трубопроводов и обслуживающего персонала. Содержание биогенных элементов в этом случае следует лимитировать более жестко, чем при сбросе очищенных стоков в водоем.[ ...]

Особенно влияло на процесс изменение содержания сульфидов. При увеличении содержания сульфидов в исходных стоках до 40 мг/л и более добиться прежней сте -пени очистки от нефтепродуктов и фенолов не удавалось, несмотря на то, что от сульфидов вода очищалась полностью. Поэтому рекомендуется предельно допустимая концентрация сульфидов - 30 мг/л.[ ...]

В настоящее время в природных водах нормируется содержание около 900 органических соединений . Среди существующих аналитических методов наиболее перспективны для решения этой задачи методы хроматографии. Однако предельно допустимые концентрации в водах большинства органических загрязнений лежат ниже предела обнаружения их этими методами, поэтому необходимым этапом является концентрирование, обычно сорбционное. Осуществление сорбционного процесса не требует сложного аппаратурного оформления и во многих случаях позволяет достичь необходимые степени концентрирования. Целью сообщения является исследование условий, а также расчет сорбционного концентрирования органических веществ на примере фенола с последующим анализом концентрата методом газовой хроматографии.[ ...]

Процессы разбавления и смешения сточных вод с водой водоема зависят также и от других трудноучитываемых условий. Многие токсические органические вещества требуют очень большого разбавления для снижения фактической их концентрации до предельно допустимой. Так, для разбавления в водоемах фенола до предельно допустимой концентрации 0,001 мг/л часто требуется снижение его фактической концентрации в несколько миллионов раз, а расчетные пункты первого водопользования нередко находятся близко от места сброса стоков и степень их разбавления бывает небольшой .[ ...]

Фенолоформальдегидные смолы применяются при вулканизации диафрагм для форматоров-вулканизаторов. Они относятся к П классу опасности, вызывают раздражение слизистых оболочек. При непосредственном контакте возможны дерматиты и экземы. Предельно допустимая концентрации фено-лоформальдегидных смол по фенолу составляет 0,3 мг/ м3.[ ...]

Необходимо отметить, что, как показывает практика, даже самые совершенные способы очиотки сточных вод не могут полностью устранить всех загрязнений. Между тем содержание лишь 0,2-0,4 мг/л нефти придает воде специфический запах, не исчезающий даже при ее хлорировании и фильтровании, а предельно допустимая концентрация фенолов в местах водопользования -0,001-0,002 мг/л (1-2 миллиардные части).[ ...]

Наиболее важными мерами профилактики отравления животных и предупреждения загрязнений молока, мяса, яиц, меда являются сбор только зрелых растительных плодов с обработанных гербицидами площадей; недопущение выпаса скота и сенокошения на участках, обработанных производными фенола, в течение следующего срока: ДНОК - 3,5 мес; нитрафеном - 2 мес; ПХФ и ПХФН-1 мес, а при засухе 2-3 мес, т. е. до тех пор, пока в почве (и, следовательно, в траве) не произойдет полная детоксикация гербицидов.[ ...]

Радиационное удаление привкусов и запахов дает прекрасные результаты в случае хлорфенольного запаха. Этот запах является одним из наиболее стойких и трудноустранимых. Именно из-за образования хлорфенолов при хлорировании воды, с целью ее дезинфекции, ГОСТ 2874-54 требует чрезвычайно низкой, предельно допустимой концентрации фенола после очистки. Она составляет 0,001 мг/л. При большей концентрации фенола образующийся при хлорировании хлорфенол придает воде неприятный и стойкий запах.[ ...]

Весьма неожиданным оказалось, что многие органические вещества, которые в природе не существуют совсем или существуют только в виде гипотетических промежуточных продуктов в биохимическом цикле, легко окисляются в биохимических установках специфическими микроорганизмами направленного действия. При этом даже вещества, известные как дезинфекционные средства и бактериальные яды, например фенол и формальдегид, могут окисляться при соответствующем разбавлении. Особо благоприятные условия для окисления этих веществ создаются в присутствии азота и фосфора -- важнейших питательных веществ для растений. Однако всегда следует обращать внимание на то, чтобы не превысить предельно допустимые концентрации для биохимических сооружений, кроме того, необходимо устранять неорганические ядовитые вещества.[ ...]

В ряде городов случайно были обнаружены подземные озера масел, дизельного топлива, например, около Курской нефтяной базы на глубине 7 м объемом 100 тыс. т, занимающее площадь до 10 га. Аналогичные «месторождения» найдены в Туле, Орле, Ростове и на Камчатке. От неучтенных сбросов гибнут малые реки, особенно в Калмыкии, Башкирии, Белгородской, Воронежской, Саратовской, Челябинской, Вологодской областях. Нефтепродукты и фенолы задушили речку Охту в Петербурге - их предельно допустимые концентрации превышены там в 10 раз.[ ...]

В некоторых странах наблюдается подверженность крупных городов действию фотохимических туманов, получивших название смогов. Смоги возникают в загрязненном воздухе в результате фотохимических реакций, протекающих под действием коротковолновой (ультрафиолетовой) солнечной радиации на газовые выбросы. Некоторые из этих реакций создают соединения, по токсичности значительно превосходящие исходные вещества. Известны многочисленные факты массовых отравлений от смогов (иногда с летальным исходом). Основными компонентами фотохимического смога являются фотооксиданты (озон, органические примеси, нитраты, пероксиацетилнит-рат), окислы азота, окись и двуокись углерода, углеводороды, альдегиды, кетоны, фенолы и др. Эти вещества в меньших количествах часто присутствуют в воздухе больших городов; в фотохимическом смоге их концентрация иногда значительно превышает предельно допустимые нормы.

Просмотров