Свойства и графики тригонометрических функций лекция. Перечислим основные свойства функции у = ctg x. «Тригонометрические Функции и их свойства»

Уроки 25-26. Функции у = tg x, у = ctg x, их свойства и графики

09.07.2015 7626 0

Цель: рассмотреть графики и свойства функций у = tg х, у = ctg х.

I. Сообщение темы и цели уроков

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (письменный опрос).

Вариант I

2. Постройте график функции:

Вариант 2

1. Как построить график функции:

2. Постройте график функции:

III. Изучение нового материала

Рассмотрим две оставшиеся тригонометрические функции - тангенс и котангенс.

1. Функция у = tg x


Остановимся на графиках функций тангенса и котангенса. Сначала обсудим построение графика функции у = tg х на промежутке Такое построение аналогично построению графика функции у = sin х, описанному ранее. При этом значение функции тангенса в точке находится с помощью линии тангенсов (см. рисунок).

Учитывая периодичность функции тангенса, получаем ее график на всей области определения параллельными переносами вдоль оси абсцисс (вправо и влево) уже построенного графика на π, 2π и т. д. График функции тангенса называют тангенсоидой.

Приведем основные свойства функции у = tg х:

1. Область определения - множество всех действительных чисел, за исключением чисел вида

y (x

3. Функция возрастает на промежутках вида где к ∈ Z .

4. Функция не ограничена.

6. Функция непрерывная.

8. Функция периодическая с наименьшим положительным периодом Т = π, т. е. у(х + п k ) = у(х).

9. График функции имеет вертикальные асимптоты

Пример 1

Установим четность или нечетность функции:

Легко проверить, что для функций а, б область определения - симметричное множество. Исследуем эти функции на четность или нечетность. Для этого найдем у(-х) и сравним значения у(х) и y (- x ).

а) Получим: Так как выполнено равенство y (- x ) = у(х), то функция у(х) по определению четная.

б) Имеем:

Так как выполнено равенство y (- x ) = -у(х), то функция у(х) по определению нечетная.

в) Область определения данной функции - несимметричное множество. Например, функция определена в точке х = π/4 и не определена в симметричной точке х = -π/4. Поэтому данная функция определенной четности не имеет.

Пример 2

Найдем основной период функции

Данная функция у(х) представляет собой алгебраическую сумму трех тригонометрических функций, периоды которых равны: T 1 = 2π, Запишем эти числа в виде дробей с одинаковыми знаменателями Наименьшее общее кратное коэффициентов НОК (6; 2; 3). Поэтому основной период данной функции

Пример 3

Построим график функции

Учтем правила преобразования графиков функции. В соответствии с ними график функции получается смещением графика функции у = tg х на π/4 единиц вправо вдоль оси абсцисс и его растяжением в 2 раза вдоль оси ординат.

Пример 4

Построим график функции

Используя определение и свойства модуля, в аргументе функции раскроем знаки модуля, рассмотрев три случая. Если х < 0, то имеем: При 0 ≤ x ≤ π /4 имеем: Для х > π /4 имеем: Далее остается построить три части данного графика. При х < 0 строим прямую у = -1. Для 0 ≤ x ≤ π /4 строим тангенсоиду Этот график получается смещением графика функции у = tg х на π/8 вправо вдоль оси абсцисс и сжатием в два раза вдоль этой оси. При х > π /4 строим прямую у = 1.

2. Функция у = ctg x

Аналогично графику функции у = tg х или с помощью формулы приведения строится график функции у = ctg x .

Перечислим основные свойства функции у = ctg x :

1. Область определения - множество всех действительных чисел, за исключением чисел вида х = п k , к ∈ Z .

2. Функция нечетная (т. е. у(-х) = - y (x )), и ее график симметричен относительно начала координат.

3. Функция убывает на промежутках вида (п k ; п + п k ), к ∈ Z .

4. Функция не ограничена.

5. Функция не имеет наименьшего и наибольшего значений.

6. Функция непрерывная.

7. Область значений Е(у) = (-∞; +∞).

8. Функция периодическая с наименьшим положительным периодом Т = п, т. е. у(х + п k ) = у(x ).

9. График функции имеет вертикальные асимптоты х = п k .

Пример 5

Найдем область определения и область значений функции

Очевидно, что область определения функции y (x ) совпадает с областью определения функции z = ctg х, т. е. область определения - множество всех действительных чисел, кроме чисел вида х = nk , k ∈ Z .

Функция y (х) сложная. Поэтому запишем ее в виде Координаты вершины параболы y (z ): zB = 1 и y в = 2 - 4 + 5 = 3. Тогда область значений данной функции Е(у) = .

3. Функция четная.

4.Функция периодическая с наименьшим положительным периодом равным 2*π.

Y = tg(x)

График функции y=tg(x).

Основные свойства:

1. Область определения вся числовая ось, за исключением точек вида x=π/2 +π*k, где k – целое.

3. Функция нечетная.

Y = ctg(x)

График функции y=ctg(x).

Основные свойства:

1. Область определения вся числовая ось, за исключением точек вида x=π*k, где k – целое.

2. Функция неограниченная. Множество значение вся числовая прямая.

3. Функция нечетная.

4.Функция периодическая с наименьшим положительным периодом равным π.

4) Зачем человеку нужно в жизни знание свойств функций и умение читать графики? Любые периодически повторяющиеся движения называются КОЛЕБАНИЯМИ

Практика изучения колебаний показала полезную и вредную роль.

Каждому специалисту необходимо владеть теорией колебательных процессов.

Теория колебаний- это область науки, связанная с математикой, физикой и медициной. Гармонические колебания

Механические колебания

Вибрация. Вредные воздействия вибрации

Ультразвук

Инфразвук звук

Электромагнитные колебания (применяются для радио, телевидения,

связи с космическими объектами)

Вывод :

    Колебания происходят по законам синусов и косинусов

    Свойства тригонометрических функций показывают какие параметры могут изменяться

    Результаты измерений и расчёты показывают как избежать вредных воздействий колебаний и как их применять

5) Остановимся подробнее, на теории колебаний в медицине. Где вы встречаетесь с колебаниями в своем организме - СЕРДЦЕ. Как называют кардиограмму сердца - СИНУСОИДА. Следовательно, сердце работает по тригонометрическим законам, и нам просто необходимо их знать и понимать.

Также тригонометрические законы встречаются и в окружающем нас мире:

В природе (биология)

В архитектуре (здания, сооружения)

В музыке (гармоничные мелодии)

и в других областях.

Сейчас вашему вниманию, группа студентов представит вам свои исследовательские работы на данную тему. Представление презентаций студентами на темы:

- "Связь тригонометрической функции и медицины"

- "Тригонометрия в медицине"

- "Тригонометрия в окружающем нас мире и жизни человека"

6) Просмотр учебного видеофильма "ЭКГ под силу каждому"

7) Знакомство студентов с ЭКГ здорового человека, и с нарушением ритма.

8) Формула подсчета ЧСС (частоты сердечных сокращений)

5. Закрепление и обобщение знаний

1. Разбить студентов на 2 группы.

2. Работа в группах. Создание "консилиума" медиков и постановка заключения по кардиограмме сердца о синусовом ритме и частоте сердечных сокращений (ЧСС)

3. Озвучивание своих заключений (по одному представителю от группы)

4. Основные выводы, коррекция преподавателем основных выводов.

6. Рефлексия

1. Самостоятельное подведение итогов урока, самоанализ и самооценка .

2. Работа с конспектами

Пометки на полях:

«+» - знал

«!» - новый материал (узнал)

«?» - хочу узнать

3. Оценка знаний.

7. Домашнее задание

1. Математика, Башмаков М.И.,2012 - Стр.107/Стр.165

2. Подготовить (по желанию) сообщение: «Тригонометрия в медицине и биологии»

Приложение к уроку

Презентации студентов

(исследовательских групп)

Тема урока: тригонометрические функции, их свойства и графики.

Тип урока: изучения и первичного закрепления новых знаний.

Форма обучения: классно-урочная.

Форма деятельности: фронтальная и индивидуальная.

Цель урока: знакомство с тригонометрическими функциями; формирование знаний и умений в построение графиков тригонометрических функций.

Задачи урока:

1. Образовательные:

Дать определения тригонометрическим функциям;

Рассмотреть основные свойства тригонометрических функций;

Показать графики тригонометрических функций.

2. Развивающие:

Способствовать развитию умений анализировать, устанавливать связи, причины и следствия;

Предвидеть возможные ошибки и способы их устранения;

Способствовать повышению концентрации внимания, развитию памяти и речи.

3. Воспитательные:

Способствовать развитию интереса к предмету «Математика»;

Способствовать развитию самостоятельности мышления;

В целях решения задач эстетического воспитания содействовать в ходе урока опрятному и грамотному построению графиков функций.

Методы обучения: словесные методы (рассказ, объяснение); наглядные методы (демонстрация, ТСО); практические методы.

Оборудование: компьютер, проектор, раздаточный материал.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

По теме: методические разработки, презентации и конспекты

Разработка урока по модульной технологии содержит конспект первого урока по теме: "Показательная функция"...

Бинарный урок был проведен в муниципальном казенном общеобразовательном учреждении "общеобразовательная школа №30" г. Белгорода. В данном образовательном учреждении обучаются дети с ограниченными возм...

Просмотров